
Quantified CTL with imperfect information∗

Raphaël Berthon1, Bastien Maubert2, and Aniello Murano3

1 École Normale Supérieure de Rennes, France
raphael.berthon@ens-rennes.fr

2 Università degli Studi di Napoli Federico II, Italy
bastien.maubert@gmail.com

3 Università degli Studi di Napoli Federico II, Italy
murano@na.infn.it

Abstract
Quantified CTL (QCTL) is a well-studied temporal logic that extends CTL with quantification
over atomic propositions. It has recently come to the fore as a powerful intermediary framework
to study logics for strategic reasoning. We extend it to include imperfect information by para-
meterising quantifiers with an observation that defines how well they observe the model, thus
constraining their behaviour. We consider two different semantics, one related to the notion of
no memory, the other to perfect recall. We study the expressiveness of our logic, and show that
it coincides with MSO for the first semantics and with MSO with equal level for the second one.
We establish that the model-checking problem is Pspace-complete for the first semantics. While
it is undecidable for the second one, we identify a syntactic fragment, defined by a notion of
hierarchical formula, which we prove to be decidable thanks to an automata-theoretic approach.

1 Introduction

Temporal logic is a powerful framework widely used in formal system-design and verifica-
tion [9, 41]. It allows reasoning over the temporal evolution of a system, without referring
explicitly to the elapsing of time. One of the most significant contributions of the field is model
checking, which allows to verify system correctness by checking whether a mathematical model
of the system satisfies a temporal logic formula expressing its desired behaviour [8, 9, 26, 27].

Depending on the view of the nature of time, two types of temporal logics are mainly
considered. In linear-time temporal logics such as LTL [41] time is treated as if each moment
in time had a unique possible future. Conversely, in branching-time temporal logics such
as CTL [8] and CTL∗ [16], each moment in time may split into various possible futures;
existential and universal quantifiers then allow expressing properties of either one or all the
possible futures. While LTL is suitable to express path properties, CTL is more appropriate for
state-based ones, and CTL∗ for both. These logics are “easy-to-use”, can express important
system properties such as liveness or safety, enjoy good fundamental theoretical properties
such as invariance under tree-unwinding of models, and come with reasonable complexities
for the main related decision problems. For instance, the model-checking and satisfiability
problems for CTL∗ are Pspace-Complete [1] and 2-Exptime-Complete [48], respectively.

Along the years, CTL∗ has been extended in a number of ways in order to verify the beha-
vior of a broad variety of systems. In multi-agent open-system verification, Alternating-Time
Temporal Logic (ATL∗), introduced by Alur, Henzinger, and Kupferman [3], is particularly
successful. This generalization of CTL∗ replaces path quantifiers with strategic modalities,
that is modalities over teams of agents that describe the ability to cooperate in order to

∗ This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Marie Sklodowska-Curie grant agreement No 709188.

2 Quantified CTL with imperfect information

achieve a goal against adversaries. ATL∗ model checking is a very active area of research and
it has been studied in several domains, including communication protocols [47], fair exchange
protocols [21, 19], and agent-oriented programs [11]. The complexity of the problem has
been extensively studied in a multitude of papers, and algorithms have been implemented in
tools [32]. Remarkably, ATL∗ has inspired fresh and more powerful logics such as Strategy
Logic (SL) [7, 35, 34], ATL∗ with strategy context (ATL∗sc) [5, 10], ATL∗ with Irrevocable
strategies (IATL∗) [2] and Memoryful ATL∗ (mATL∗) [36]. These logics are progressively
overtaking ATL∗; in particular this is the case for SL as it can can express fundamental
game-theoretic concepts such as Nash Equilibrium and Subgame Perfect Equilibrium [34].

In the landscape of temporal logics, another breakthrough contribution comes from
Quantified CTL∗ (QCTL∗), which extends CTL∗ with the possibility to quantify over atomic
propositions [45, 15, 23, 24, 17, 30]. QCTL∗ turns out to be very expressive (indeed, it is equi-
valent to Monadic Second-Order Logic, MSO for short) and was usefully applied in a number
of scenarios. Recently it has come to the fore as a convenient and uniform intermediary logic
to easily obtain algorithms for ATL∗sc, SL, as well as related formalisms [30, 33, 34]. Indeed,
strategies can be represented by atomic propositions labelling the execution tree of the
game structure under study, and strategy quantification can thus be expressed by means of
propositional quantifications. As a remark, quantification in QCTL∗ can be interpreted either
on Kripke structures (structure semantics) or their execution tree (tree semantics), allowing
for the encoding of memoryless or perfect-recall strategies, respectively. This difference
impacts also the complexity of the related decision problems: for instance, moving from
structure to tree semantics, model checking jumps from Pspace to non-elementary.

In game theory and open-system verification an important body of work has been devoted
to imperfect information, which refers to settings in which players have partial information
about the moves taken by the others [6, 13, 20, 25, 42]. This is a common situation in
real-life scenarios where players have to act without having all the relevant information at
hand. In computer science this situation occurs for example when some system’s variables
are internal/private [44]. Imperfect information is usually modelled by indistinguishability
relations over the states of the game. During a play, some players may not know precisely
in which state they are, and therefore they cannot base their actions on the exact current
situation: they must choose their actions uniformly over indistinguishable states [25].

This uniformity constraint deeply impacts the complexity of decision problems. It is well
known that multi-player games with imperfect information are computationally hard, in
general undecidable [38], and to retain positive complexity results one needs to restrict players’
capabilities, by bounding their memory of past moves [12] or putting some hierarchical order
over their observational power [42]. Unfortunately, most of the approaches exploited under
full observation are not appropriate for imperfect information. In particular this is the case of
QCTL∗, unless opportunely adapted. In this paper we work in this direction by incorporating
in QCTL∗ the essence of imperfect information, that is the uniformity constraint on choices.
We believe it may provide a uniform framework to obtain new results on logics for strategic
reasoning under imperfect information, as does QCTL∗ in the perfect information setting.

Our contribution. We introduce QCTL∗i , an opportune extension of QCTL∗ that in-
tegrates the central feature of imperfect information, i.e., uniformity constraint on choices.
We add internal structure to the states of the models, much like in Reif’s multiplayer game
structures [38] or distributed systems [18], and we parameterise propositional quantifiers
with observations that define what portions of the states a quantifier can “observe”. The
semantics is adapted to capture the idea of quantifications on atomic propositions being
made with partial observation. Like in [30], we consider both structure and tree semantics.

R. Berthon, B. Maubert and A. Murano 3

We study the expressive power of QCTL∗i . By using the same argument as for QCTL∗ [30],
we first show that QCTL∗i and QCTLi are equally expressive for both semantics. Then we
prove that for the structure semantics, these logics are no more expressive than QCTL, and
thus coincide with MSO. Finally we show that under tree semantics QCTLi is expressively
equivalent to MSO extended with the equal level predicate (MSOeq, see [14, 31, 46]).

Concerning the model-checking problem we first prove that under structure semantics it
is Pspace-complete for both QCTL∗i and QCTLi, like QCTL. Under tree semantics, undecid-
ability follows from the equivalence with MSOeq. However we identify a decidable syntactic
fragment, consisting of those formulas in which nested quantifiers have hierarchically ordered
observations, innermost ones observing more than outermost ones. We call such formulas
hierarchical formulas. Interestingly, a decidability result for Quantified µ-Calculus with
partial observation [40] uses a similar syntactic restriction. This logic is very close to ours,
but orthogonal: while our tree semantics relies on a synchronous perfect-recall notion of
imperfect information, theirs is asynchronous. This hierarchical restriction is also related to
decidability results for games with imperfect information [39, 4] and distributed synthesis [22].
Our decision procedure relies on automata constructions involving the narrowing operation
introduced by Kupferman and Vardi in [28] for distributed synthesis. We believe that our
choice of modelling imperfect information by means of local states eases greatly the use
of automata techniques to tackle imperfect information. Finally, our result provides new
decidability results for ATL∗sc with imperfect information (not presented here), and we trust
it will find applications in other logics, such as SL with imperfect information.

Plan. In Section 2 we recall Kripke structures and trees, and the syntax and semantics
of QCTL∗. We then present QCTL∗i in Section 3, we study its expressiveness in Section 4 and
its model-checking problem in Section 5. We conclude and discuss future work in Section 6.

2 Preliminaries

Let Σ be an alphabet. A finite (resp. infinite) word over Σ is an element of Σ∗ (resp. Σω).
The empty word is classically noted ε, and Σ+ = Σ∗ \ {ε}. The length of a word is |w| := 0
if w is the empty word ε, if w = w0w1 . . . wn is a finite non-empty word then |w| := n+ 1,
and for an infinite word w we let |w| := ω. Given a word w and 0 ≤ i, j ≤ |w| − 1, we let wi
be the letter at position i in w and w[i, j] be the subword of w that starts at position i and
ends at position j. If w is infinite, we let wi := w[i, ω]. We write w 4 w′ if w is a prefix of
w′, and w4 is the set of finite prefixes of word w. Finally, for n ∈ N we let [n] := {1, . . . , n}.

2.1 Kripke structures and trees
Let AP be a countably infinite set of atomic propositions and let AP ⊂ AP be a finite subset.

I Definition 1. A Kripke structure over AP is a tuple S = (S,R, `) where S is a set of states,
R ⊆ S × S is a left-total1 transition relation and ` : S → 2AP is a labelling function.

A pointed Kripke structure is a pair (S, s) where s ∈ S, and the size |S| of a Kripke
structure S is its number of states. A path in a structure S = (S,R, `) is an infinite word
λ ∈ Sω such that for all i ∈ N, (λi, λi+1) ∈ R. For s ∈ S, we let Paths(s) be the set of all
paths that start in s. A finite path is a finite non-empty prefix of a path.

1 i.e., for all s ∈ S, there exists s′ such that (s, s′) ∈ R.

4 Quantified CTL with imperfect information

We now define (infinite) trees. In many works, trees are defined as prefixed-closed sets of
words with the empty word ε as root. Here trees represent unfoldings of Kripke structures,
and we find it more convenient to see a node as a sequence of states and the root as the
initial state, hence the following definition, where X is a finite set:

I Definition 2. An X-tree τ is a nonempty set of words τ ⊆ X+ such that:
there exists r ∈ X, called the root of τ , such that each u ∈ τ starts with r;
if u · x ∈ τ and u 6= ε, then u ∈ τ , and
if u ∈ τ then there exists x ∈ X such that u · x ∈ τ .

The elements of a tree τ are called nodes. If u · x ∈ τ , we say that u · x is a child of u. An
X-tree is full if every node u has a child u · x for each x ∈ X. The depth of a node u is |u|.
Similarly to Kripke structures, a path is an infinite sequence of nodes λ = u0u1 . . . such that
for all i ∈ N, ui+1 is a child of ui, and Paths(u) is the set of paths that start in node u. An
AP-labelled X-tree, or (AP, X)-tree for short, is a pair t = (τ, `), where τ is an X-tree called
the domain of t and ` : τ → 2AP is a labelling. For a labelled tree t = (τ, `) and an atomic
proposition p ∈ AP , we define the p-projection of t as the labelled tree t⇓p := (τ, `⇓p), where
for each u ∈ τ , `⇓p (u) := `(u) \ {p}. For a set of trees L, we let L⇓p := {t⇓p | t ∈ L}.

I Definition 3 (Tree unfoldings). Let S = (S,R, `) be a Kripke structure over AP, and let
s ∈ S. The tree-unfolding of S from s is the (AP, S)-tree tS,s = (τ, `′), where τ is the set of
all finite paths that start in s, and for every u ∈ τ , `′(u) = `(last(u)).

2.2 QCTL∗, syntax and semantics

We recall the syntax of QCTL∗, as well as both the structure and tree semantics.

I Definition 4. The syntax of QCTL∗ is defined by the following grammar:

ϕ := p | ¬ϕ | ϕ ∨ ϕ | Eψ | ∃p. ϕ
ψ := ϕ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ

where p ∈ AP. Formulas of type ϕ are called state formulas, those of type ψ are called path
formulas, and QCTL∗ consists of state formulas.

Like in [30] we consider two different semantics, the structure semantics and the tree
semantics: in the former formulas are evaluated directly on the structure, while in the latter
the structure is first unfolded into an infinite tree. In the first case, quantifying over p means
choosing a truth value for p in each state of the structure, while in the second case it is
possible to choose a different truth value for p in each finite path of the structure.

2.2.1 Structure semantics

A QCTL∗ state (resp. path) formula is evaluated in a state (resp. path) of a Kripke structure.
To define the semantics of quantifications over propositions, the following definition is handy.

I Definition 5. For p ∈ AP , two structures S = (S,R, `) and S ′ = (S′, R′, `′) are equivalent
modulo p, written S ≡p S ′, if S = S′, R = R′ and for each state s ∈ S, `(s)\{p} = `′(s)\{p}.
This definition also applies to labelled trees seen as infinite Kripke structures.

R. Berthon, B. Maubert and A. Murano 5

The satisfaction relation |=s for the structure semantics is defined inductively as follows,
where S = (S,R, `) is a Kripke structure, s is a state and λ is a path in S:

S, s |=s p if p ∈ `(s) S, s |=s ¬ϕ if S, s 6|=s ϕ

S, s |=s ϕ ∨ ϕ′ if S, s |=s ϕ or S, s |=s ϕ
′

S, s |=s Eψ if there exists λ ∈ Paths(s) such that S, λ |=s ψ

S, s |=s ∃p. ϕ if there exists S ′ ≡p S such that S ′, s |= ϕ

S, λ |=s ϕ if S, λ0 |=s ϕ S, λ |=s ¬ψ if S, λ 6|=s ψ

S, λ |=s ψ ∨ ψ′ if S, λ |=s ψ or S, λ |=s ψ
′ S, λ |=s Xψ if S, λ1 |=s ψ

S, λ |=s ψUψ′ if there exists i ≥ 0 such that S, λi |=s ψ
′ and for 0 ≤ j < i, S, λj |=s ψ

2.2.2 Tree semantics
In the tree semantics, a formula holds in a state s of a structure S if it holds in the tree-
unfolding of S from s. The semantics of QCTL∗ on trees could be derived from the structure
semantics, seeing 2AP-labelled trees as infinite-state Kripke structures. We define it explicitly
on trees though, as it will make the presentation of the semantics for QCTLi clearer.

The satisfaction relation |=t for the tree semantics is thus defined inductively as follows,
where t = (τ, `) is a 2AP-labelled X-tree, u is a node and λ is a path in τ :

t, u |=t p if p ∈ `(u) t, u |=t ¬ϕ if t, u 6|=t ϕ

t, u |=t ϕ ∨ ϕ′ if t, u |=t ϕ or t, u |=t ϕ
′

t, u |=t Eψ if there exists λ ∈ Paths(u) such that t, λ |=t ψ

t, u |=t ∃p. ϕ if there exists t′ ≡p t such that t′, u |= ϕ

t, λ |=t ϕ if t, λ0 |=t ϕ t, λ |=t ¬ψ if t, λ 6|=t ψ

t, λ |=t ψ ∨ ψ′ if t, λ |=t ψ or t, λ |=t ψ
′ t, λ |=t Xψ if t, λ1 |=t ψ

t, λ |=t ψUψ′ if there exists i ≥ 0 such that t, λi |=t ψ
′ and for 0 ≤ j < i, t, λj |=t ψ

We may write t |=t ϕ for t, r |=t ϕ, where r is the root of t, and given a Kripke structure
S, a state s and a QCTL∗ formula ϕ, we write S, s |=t ϕ if tS,s |=t ϕ.

3 QCTL∗ with imperfect information

We now enrich the models, syntax and semantics to capture the idea of quantifications on
atomic propositions being made with a partial observation of the system.

3.1 Compound Kripke structures
First, we enrich Kripke structures by adding internal structure to states: we set them as
tuples of local states. To ease presentation and obtain finite alphabets for our tree automata
in Section 5.2.2, we fix a collection {Li}i∈[n] of n disjoint finite sets of local states.

For I ⊆ [n], we let XI :=
Ś

i∈I Li. Let J ⊆ I ⊆ [n]. For x = (li)i∈I ∈ XI , we define
the XJ -projection of x as x ↓XJ := (li)i∈J . If J = ∅, we let x ↓∅:= 0, where 0 is a special
symbol, and we let X∅ := {0}. This definition extends naturally to words and trees over XI .
Observe that when projecting a tree, nodes with same projection are merged. In particular,
for every XI -tree τ , τ ↓∅ is the only X∅-tree, 0ω. We also define a lift operator ↑Iy that, given
an XJ -tree rooted in x and a tuple y ∈ XI\J , produces the XI -tree rooted in (x, y) defined
as τ ↑XIy := {u ∈ (x, y) ·X∗I | u↓XJ∈ τ}. Observe that because the sets {Li}i∈[n] are disjoint,
the ordering of elements in tuples of XI does not matter. For an (AP, XJ)-tree t = (τ, `), we
define t↑XIy := (τ ↑XIy , `′) where `′(u) := `(u↓XJ). In the following we may write ↑Iy for ↑XIy ,
and ↓J instead of ↓XJ .

6 Quantified CTL with imperfect information

I Definition 6. A compound Kripke structure, or CKS, is a Kripke structure S = (S,R, `)
such that S ⊆ X[n]. We call n the dimension of CKSs.

I Remark. Note that by fixing finite sets of local states, we also fix a finite set of possible
states. If it were not so, our translation from QCTLi to QCTL in Theorem 13, as well as
the one from QCTLi to MSOeq in Theorem 15 would no longer be valid, making us also lose
Corollary 14. We would no longer have equivalence in expressivity, but we would still have
that QCTLi is at least as expressive as MSO (resp. MSOeq) for structure semantics (resp.
tree semantics). Also our results on model checking in Section 5, and in particular our main
result, Theorem 23, would still be valid.

To model the fact that quantifiers may not observe some local states, we define a notion
of observation and the associated notion of observational indistinguishability.

I Definition 7. An observation is a finite set of indices o ⊂ N. For an observation o and
I ⊆ [n], two tuples x, x′ ∈ XI are o-indistinguishable, written x ∼o x′, if x↓I∩o= x′ ↓I∩o.

Intuitively, a quantifier with observation omust choose the valuation of atomic propositions
uniformly with respect to o, and this notion of uniformity will vary between the structure
semantics and the tree semantics. But first, let us introduce the syntax of QCTL∗i .

3.2 QCTL∗
i , syntax and semantics

The syntax of QCTL∗i is that of QCTL∗, except that quantifiers over atomic propositions are
parameterised by a set of indices that defines what local states the quantifier can “observe”.

I Definition 8. The syntax of QCTL∗i is defined by the following grammar:

ϕ := p | ¬ϕ | ϕ ∨ ϕ | Eψ | ∃op. ϕ
ψ := ϕ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ

where p ∈ AP and o ⊂ N is an observation.

We use standard abbreviations: > := p ∨ ¬p, ⊥:= ¬>, Fψ := >Uψ, Gψ := ¬F¬ψ and
Aψ := ¬E¬ψ. The size |ϕ| of a formula ϕ is defined inductively as usual, but the following
case: |∃op. ϕ| := 1 + |o|+ |ϕ|. We also classically define the syntactic fragment QCTLi:

I Definition 9. The syntax of QCTLi is defined by the following grammar:

ϕ := p | ¬ϕ | ϕ ∨ ϕ | ∃op. ψ | EXϕ | AXϕ | EϕUϕ | AϕUϕ

where p ∈ AP and o ⊂ N is an observation.

3.2.1 Structure semantics
In the case of structure semantics, uniformity is defined as follows:

I Definition 10. Let S = (S,R, `) be a CKS, p ∈ AP and o ⊂ N. S is o-uniform in p if for
every pair of states s, s′ ∈ S such that s ∼o s′, it holds that p ∈ `(s) if and only if p ∈ `(s′).

We enrich the satisfaction relation |=s with the following inductive case, where (S, s) is a
pointed CKS:

S, s |=s ∃op. ϕ if there exists S ′ ≡p S such that S ′ is o-uniform in p and S ′, s |=s ϕ

Observe that ∃{1,...,n}p. ϕ is equivalent to the QCTL∗ formula ∃p. ϕ.

R. Berthon, B. Maubert and A. Murano 7

3.2.2 Tree semantics
As observed in the introduction, propositional quantifiers can be seen as having perfect recall
in the tree semantics and no memory in the structure semantics. The following definition for
indistinguishability on trees, which differs from that for CKS, reflects this difference.

I Definition 11. Let t = (τ, `) be a labelled XI -tree, p ∈ AP an atomic proposition and
o ⊂ N an observation. Two nodes u = u0 . . . ui and u′ = u′0 . . . u

′
j of τ are o-indistinguishable,

written u ≈o u′, if i = j and for all k ∈ {0, . . . , i} we have uk ∼o u′k. Tree t is o-uniform in p
if for every pair of nodes u, u′ ∈ τ such that u ≈o u′, we have p ∈ `(u) iff p ∈ `(u′).

The tree semantics for QCTL∗i is defined on labelled Xn-trees, and it is obtained by
enriching |=t as follows:

t, u |=t ∃op. ϕ if there exists t′ ≡p t such that t′ is o-uniform in p and t′, u |=t ϕ.

Consider the following CTL formula: border(p) := AFp ∧AG(p→ AXAG¬p).
This formula holds in a labelled tree if and only if each path contains exactly one

node labelled with p. Therefore, evaluating the QCTLi formula ∃∅p. border(p) amounts to
choosing a level of the tree where to place one horizontal line of p’s.

4 Expressiveness

In this section we study the expressive power of our logics. We first observe that for both
semantics, QCTL∗i and QCTLi are equally expressive. We then prove that with structure
semantics QCTLi is expressively equivalent to QCTL, and thus also to MSO. Finally we show
that under tree semantics QCTL∗i is expressively equivalent to MSO with equal level predicate.
Note that Theorem 13, Corollary 14 and Theorem 15 below only hold if the logics can talk
about the local states. For this reason, in this section we assume a set of dedicated atomic
propositions APl =

⋃
i∈[n]

⋃
l∈Li{pl} ⊂ AP such that for every CKS S = (S,R, `), for each

i ∈ [n] and l ∈ Li, for each state s = (l1, . . . , ln) ∈ S, we have pl ∈ `(s) iff li = l.

4.1 QCTL∗
i , QCTLi and QCTL

We first remark that for the same reason why QCTL∗ is no more expressive than QCTL, also
QCTL∗i and QCTLi are equally expressive (the proof of [30, Proposition 3.8] readily applies):

I Theorem 12. Under both semantics, QCTL∗i and QCTLi are expressively equivalent.

We now prove that for the structure semantics, QCTLi is no more expressive than QCTL,
and thus has the same expressivity as MSO.

I Theorem 13. Under structure semantics, QCTLi and QCTL are expressively equivalent.

Proof. It is quite clear that QCTLi subsumes QCTL. Observe however that the quantifier on
propositions from QCTL can be translated using the quantifier ∃[n] only because we have
fixed the dimension of our models. If we allowed for models with arbitrary dimension we
would have to add the classic quantifier ∃ in the syntax of QCTLi for it to capture QCTL.

For the other direction, we define a translation ˜ from QCTLi to QCTL. We only provide
the inductive case for the quantification on propositions, the others being trivial.

∃̃op. ϕ := ∃p.

 ∧
(l1,...,lk)∈Xo∩[n]

AG(
k∧
i=1

pli → p) ∨AG(
k∧
i=1

pli → ¬p)

 ∧ ϕ̃.

8 Quantified CTL with imperfect information

Observe that checking uniformity of p in the reachable part of the model is sufficient, as the
labelling of unreachable states is indifferent. It can be proven easily that for every CKS S,
state s ∈ S and formula ϕ ∈ QCTLi, it holds that S, s |=s ϕ iff S, s |=s ϕ̃. J

I Remark. One can check that |ϕ̃| = O(nmn|ϕ|), where m = maxi∈[n] |Li|.

4.2 QCTLi and MSO with equal level
We briefly recall the definition MSOeq (see, e.g., [14, 46] for more detail). In the following,
Var1 = {x, y, . . .} (resp. Var2 = {X,Y, . . .}) is a countably-infinite set of first-order (resp.
second-order) variables. We also use a predicate Pp for each atomic proposition p ∈ AP.

The syntax of MSO with equal level relation, or MSOeq, is given by the following grammar:

ϕ ::= Pp(x) | x = y | S(x, y) | x ∈ X | eq(x, y) | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ | ∃X.ϕ

where p ∈ AP, x, y ∈ Var1 and X ∈ Var2.
The syntax of MSO is obtained by removing the eq(x, y) production rule. We write

ϕ(x1, . . . , xi, X1, . . . , Xj) to indicate that variables x1, . . . , xi and X1, . . . , Xj may appear
free in ϕ. Without loss of generality we assume that a variable cannot appear both free
and quantified in a formula. We use the standard semantics of MSO, the successor relation
symbol S being interpreted by the transition relation on Kripke structures, and by the
child relation on trees. The semantics for MSOeq is only defined on trees, and eq(x, y)
holds if the nodes denoted by x and y are at the same depth in the tree. We write
M, s1, . . . , si, S1, . . . , Sj |= ϕ(x1, . . . , xi, X1, . . . , Xj) when ϕ holds in model M when xk
(resp. Xk) is interpreted as sk (resp. Sk) for k ∈ [i] (resp. k ∈ [j]).

Since we aim at comparing the expressivity of MSO (with equal level predicate in the
case of tree semantics) with that of the modal logic QCTLi, we will consider MSO formulas
of the form ϕ(x), where x is a free variable representing the point of evaluation in the model.

First, we have seen that under the structure semantics QCTLi has the same expressivity
as QCTL. Since QCTL has the same expressivity as MSO (evaluated on reachable parts of
the structures) [30], we obtain the following corollary of Theorem 13:

I Corollary 14. Under structure semantics, MSO and QCTLi are equally expressive.

We now turn to the case of the tree semantics. The constraint put on the tree semantics
for the proposition quantifier involves testing length equality for arbitrarily long paths or, in
terms of trees, comparing the depths of arbitrarily deep nodes. It is thus not a surprise that
QCTLi with tree semantics is more expressive than MSO on trees. It also seems natural that
extending MSO with the equal level predicate allows to capture this constraint on proposition
quantification, and thus that MSOeq is as expressive as QCTLi with tree semantics. We
establish with the following theorem that in fact the other direction also holds.

I Theorem 15. Under tree semantics, MSOeq and QCTLi are equally expressive.

Proof. We first show how to express in MSOeq that two nodes in the unfolding of a CKS
are o-indistinguishable (see Definition 11). Let o be an observation. We define the MSOeq
formula ϕo(x, y) as follows:

ϕo(x, y) := eq(x, y)∧∀x′.∀y′.

x′ 4 x ∧ y′ 4 y ∧ eq(x′, y′)→
∧

i∈o∩[n]

∧
l∈Li

Ppl(x′)↔ Ppl(y′)

where x′ 4 x is an MSO formula expressing that there is a path from x′ to x.

R. Berthon, B. Maubert and A. Murano 9

Clearly, for every CKS S and nodes u, u′ in its unfolding tS,s from some state s,

tS,s, u, u
′ |= ϕo(x, y) iff u ≈o u′.

It is then easy to see that QCTLi with tree semantics can be translated into MSOeq: the trans-
lation for CTL is standard, and propositional quantification with imperfect information can be
expressed using second order quantification and the above formula for o-indistinguishability.

For the other direction, we build upon the following translation from MSO to QCTL,
presented in [30]. For ϕ(x, x1, . . . , xi, X1, . . . , Xj) ∈ MSO, we inductively define ϕ̂ as:

P̂p(x) = p P̂p(xk) = EF(pxk ∧ p)
x̂ = xk = pxk x̂k = xl = EF(pxk ∧ pxl)
x̂ ∈ Xk = pXk ̂xk ∈ Xk = EF(pxk ∧ pXk)
¬̂ϕ′ = ¬ϕ̂′ ϕ̂1 ∨ ϕ2 = ϕ̂1 ∨ ϕ̂2

∃̂xk.ϕ′ = ∃pxk . uniq(pxk) ∧ ϕ̂′ ∃̂Xk.ϕ′ = ∃pXk . ϕ̂′
̂S(x, xk) = EXpxk ̂S(xk, x) = ⊥

̂S(xk, xl) = EF(pxk ∧EXpxl)

where uniq(p) := EFp ∧ ∀q. (EF(p ∧ q)→ AG(p→ q)) holds in a tree iff it has exactly
one node labelled with p. Observe that x being interpreted as the root of a tree it has no
incoming edge, hence the translation of S(xk, x).

We extend this translation into one from MSOeq to QCTLi by adding the following rules:

̂eq(x, xk) = pxk
̂eq(xk, xl) = ∃∅p. border(p) ∧AG(pxk → p ∧ pxl → p)

Observe that x being interpreted as the root, xk is on the same level as x if and only if it is
also assigned the root. Concerning the second case, recall from Section 3.2.2 that the QCTLi
formula ∃∅p. border(p) places in the tree one unique horizontal line of p’s. Requiring that
xk and xl be both on this line thus ensures that they are on the same level. It is then easy
to prove by induction the following lemma:

I Lemma 16. For every ϕ(x, x1, . . . , xi, X1, . . . , Xj) ∈ MSOeq and every pointed CKS (S, s),

tS,s, s, u1, . . . , ui, U1, . . . , Uj |= ϕ(x, x1, . . . , xi, X1, . . . , Xj) iff t′S(s), s |=t ϕ̂

where t′S,s is obtained from tS,s by changing the labelling for variables pxk and pXk as follows:
pxk ∈ `′(u) if u = uk and pXk ∈ `′(u) if u ∈ Uk.

In particular, it follows that tS,s, s |= ϕ(x) iff tS,s, s |= ϕ̂. J

I Remark. The two-way translation between QCTLi and MSOeq shows that when local states
are identified by atomic propositions, there is a normal form for QCTLi formulas involving
only blind and perfect-information quantifiers.

5 Model checking QCTLi

We now study the model-checking problem for QCTL∗i , both for structure and tree semantics.
In other terms, we study the problem of deciding, given a finite CKS S, a state s ∈ S and a
QCTL∗i formula ϕ, whether it holds that S, s |=s ϕ (or S, s |=t ϕ for the tree semantics).

10 Quantified CTL with imperfect information

5.1 Structure semantics
We first prove that under structure semantics, similarly to QCTL∗ and QCTL, the model-
checking problem is Pspace-complete for both QCTLi and QCTL∗i . Observe that if n is fixed
the translation from QCTLi to QCTL from Theorem 13 suffices to obtain the upper bound.
But this translation, being exponential in n (see Remark 4.1), is not enough if n is not fixed;
we provide an algorithm to show that the result holds even if n is part of the input.

I Theorem 17. Under structure semantics, model checking QCTL∗i is Pspace-complete.

Proof. Hardness follows from the Pspace-hardness of model checking QCTL [30]. For the
upper bound, we modify the algorithm described in [30, Theorem 4.2]. The main difference
is that when we guess a labelling for p on a CKS S, we need to check that this labelling
is uniform. With structure semantics this can be done in deterministic time O(|S|2 · n):
look at every pair of states, and check that if they are observationally equivalent (tested by
comparing at most n pairs of local states) then they agree on p.

We prove that the model-checking problem for QCTL∗i is in Pspace by induction on the
nesting depth k of propositional quantification in input formulas. If k = 0, i.e., the input
formula is a CTL∗ formula, call a CTL∗ model-checking algorithm running in polynomial
space. For nesting depth k + 1, the input formula ϕ is of the form ϕ = Φ[qi 7→ ∃oipi. ϕi],
where Φ is a CTL∗ formula and for each i, qi is a fresh atomic proposition, oi is an observation
and ϕi a QCTL∗i formula of nesting depth at most k. For each i, guess in linear time a
labelling for pi, check in quadratic time that it is uniform, evaluate formula ϕi in each
state with this labelling, and mark states where it holds with qi. By induction hypothesis,
evaluating ϕi can be done in polynomial space. It just remains to evaluate the CTL∗ formula
Φ in polynomial space. The overall procedure thus runs in nondeterministic polynomial
space, and because NPspace = Pspace, the problem is in Pspace. J

5.2 Tree semantics
We turn to the case of tree semantics. The first undecidability result comes at no surprise
since QCTLi can express the existence of winning strategies in imperfect-information games.

I Theorem 18. Under tree semantics, the model-checking problem for QCTLi is undecidable.

Proof. The MSOeq theory of the binary tree is undecidable [31], and with Lemma 16 we
obtain a reduction to the model-checking problem for QCTLi. J

5.2.1 Alternating tree automata
We briefly recall the notion of alternating (parity) tree automata. For a set Z, B+(Z) is
the set of formulas built with elements of Z as atomic propositions, using only connectives
∨ and ∧, and with >,⊥∈ B+(Z). An alternating tree automaton (ATA) on (AP, X)-trees
is a structure A = (Q, δ, qι, C) where Q is a finite set of states, qι ∈ Q is an initial state,
δ : Q× 2AP → B+(X ×Q) is a transition function, and C : Q→ N is a colouring function.
To ease reading we shall write atoms in transition formulas between brackets, such as [x, q].
A nondeterministic tree automaton (NTA) on (AP, X)-trees is an ATA A = (Q, δ, qι, C) such
that for every q ∈ Q and a ∈ 2AP, if δ(q, a) is written in disjunctive normal form, then for
every direction x ∈ X, each disjunct contains exactly one element of {x}×Q. The size of an
ATA is its number of states and its index is its number of different colours.

Because we work with trees that are not necessarily complete as they represent unfoldings
of Kripke structures, we find it convenient to assume that the state set is partitioned between

R. Berthon, B. Maubert and A. Murano 11

Q> and Q⊥: when sent in a direction where there is no node in the input tree, states in Q>
accept immediately while states in Q⊥ reject immediately2.

We also recall the definition of acceptance by ATA via games between Eve and Adam.
Let A = (Q, δ, qι, C) be an ATA over (AP, X)-trees, let t = (τ, `) be such a tree and
let uι ∈ τ . We define the parity game G(A, t, uι) = (V,E, vι, C ′): the set of positions is
V = τ ×Q× B+(X ×Q), the initial position is vι = (uι, qι, δ(qι, uι)), and a position (u, q, α)
belongs to Eve if α is of the form α1 ∨ α2 or [x, q′]; otherwise it belongs to Adam. Moves in
G(A, t, uι) are defined by the following rules:

(u, q, α1 † α2)→ (u, q, αi) where † ∈ {∨,∧} and i ∈ {1, 2},

(u, q, [x, q′])→

(u · x, q′, δ(q′, `(u · x))) if u · x ∈ t
(u, q,>) if u · x /∈ t and q ∈ Q>

(u, q,⊥) if u · x /∈ t and q ∈ Q⊥

Positions of the form (u, q,>) and (u, q,⊥) are deadlocks, winning for Eve and Adam
respectively. The colouring is inherited from the one of the automaton: C ′(u, q, α) = C(q).

A tree t is accepted from node u by A if Eve has a winning strategy in G(A, t, u), and we
let L(A) be the set of trees accepted by A from their root.

We recall three classic results on tree automata. The first one is that nondeterministic tree
automata are closed under projection, and was established by Rabin to deal with second-order
monadic quantification:

I Theorem 19 (Projection [43]). Given an NTA N and an atomic proposition p ∈ AP, one
can build an NTA N ⇓p of same size and index such that L(N ⇓p) = L(N)⇓p.

Because it will be important to understand the automata construction for our decision
procedure in Section 5.2.2, we briefly recall that the projected automaton N ⇓p is simply
automaton N with the only difference that when it reads the label of a node, it can
choose whether p is there or not: if δ is the transition function of N , that of N ⇓p is
δ′(q, a) = δ(q, a ∪ {p}) ∨ δ(q, a \ {p}), for any state q and label a ∈ 2AP. Another way of
seeing it is that N ⇓p first guesses a p-labelling for the input tree, and then simulates N
on this modified input. To prevent N ⇓p from guessing different labels for a same node in
different executions, it is crucial that N be nondeterministic, reason why we need the next
classic result: the crucial simulation theorem, due to Muller and Schupp.

I Theorem 20 (Simulation [37]). Given an ATA A, one can build an NTA N of exponential
size and linear index such that L(N) = L(A).

The last one was established by Kupferman and Vardi to deal with imperfect information
aspects in distributed synthesis. The rough idea is that, if one just observes X, uniform
p-labellings on X × Y -trees can be obtained by choosing the labellings directly on X-trees,
and then lifting them to X × Y .

I Theorem 21 (Narrowing [28]). Given an ATA A on X × Y -trees, one can build an ATA
A↓X on X-trees of same size such that for all y ∈ Y , t ∈ L(A↓X) iff t↑X×Yy ∈ L(A).

In fact the result in [28] is stated for t (and thus also t↑X×Y) a complete tree, but the
proof transfers straightforwadly to this slightly more general result.

2 Note that we could also work only with complete trees, with a special symbol labelling missing nodes.

12 Quantified CTL with imperfect information

5.2.2 A decidable fragment: hierarchy on observations
We turn to our main result, which is the identification of an important decidable fragment.

I Definition 22. A QCTL∗i formula ϕ is hierarchical if for all subformulas ϕ1, ϕ2 of the form
ϕ1 = ∃o1p1. ϕ

′
1 and ϕ2 = ∃o2p2. ϕ

′
2 where ϕ2 is a subformula of ϕ′1, we have o1 ⊆ o2.

In other words, a formula is hierarchical if innermost propositional quantifiers observe at
least as much as outermost ones. We let QCTL∗i,⊂ be the set of hierarchical QCTL∗i formulas.

I Theorem 23. Under tree semantics, model checking QCTL∗i,⊂ is non-elementary decidable.

In order to prove this we establish Lemma 25 below, but we first introduce a few more
notations. For every ϕ ∈ QCTL∗i , we let Iϕ :=

⋂
o∈O o, where O is the set of observations that

occur in ϕ, with the intersection over the empty set defined as [n]. We also let Xϕ := XIϕ

(recall that for I ⊆ [n], XI =
Ś

i∈I Li). We will need a final important definition.

I Definition 24 (Merge). Let t = (τ, `) be an (AP, X)-tree and t′ = (τ ′, `′) an (AP ′, X)-tree.
We define the merge of t and t′ as the (AP∪AP ′)-labelled X-tree t! t′ := (τ ∩ τ ′, `′′), where
`′′(u) = `(u) ∪ `′(u).

We explain the idea behind this definition. In our decision procedure, quantification on
atomic propositions is performed by means of automata projection (see Theorem 19). But in
order to obtain uniform labellings for these propositions, we need to first narrow down our
automata and our trees (see Theorem 21), and in this process we lose information on the
labelling of atomic propositions in the CKS S on which we evaluate the formula. To address
this problem, first we assume without loss of generality that propositions that are quantified
upon in Φ do not appear free in Φ. We can then partition propositions in Φ between those
that are quantified upon, AP ∃, and those that appear free, APf . We use the input tree
of the automaton we build to carry the labelling for AP ∃, and in the end the input tree is
merged with the unfolding of S that carries the labelling to evaluate propositions in APf .

I Lemma 25. Let Φ ∈ QCTL∗i,⊂ with AP ∃ and APf defined as above, and let S be a finite
CKS over APf . For every subformula ϕ of Φ and state s of S, one can build an ATA Aϕs on
(AP ∃, Xϕ)-trees such that for every (AP ∃, Xϕ)-tree t rooted in s↓Xϕ ,

t ∈ L(Aϕs) iff t↑[n]
y ! tS,s |=t ϕ, where y = s↓[n]\Iϕ .

For an XI -tree t, from now on t↑[n] ! tS,s stands for t↑[n]
y ! tS,s, where y = s↓[n]\I .

Proof. Let Φ ∈ QCTL∗i,⊂, and let AP ∃ (resp. APf) be the set of atomic propositions that
are quantified upon (resp. that appear free) in Φ. Modulo renaming of atomic propositions,
we can assume without loss of generality that AP ∃ and APf are disjoint. Let S = (S,R, `S)
be a finite CKS over APf . For each state s ∈ S and each subformula ϕ of Φ (note that
all subformulas of Φ are also hierarchical), we define by induction on ϕ the ATA Aϕs . The
definition builds upon the classic construction for CTL∗ from [29].

ϕ = p: We let Aps be the ATA over X[n]-trees with one unique state qι, with transition
function defined as follows:

δ(qι, a) =
{
> if (p ∈ APf and p ∈ `S(s)) or (p ∈ AP ∃ and p ∈ a)
⊥ if (p ∈ APf and p /∈ `S(s)) or (p ∈ AP ∃ and p /∈ a)

R. Berthon, B. Maubert and A. Murano 13

The idea is that since we know the state s ∈ S in which we want to evaluate the formula,
we can read the labelling for atomic propositions in APf (those that are not quantified
upon) directly from s. However, for propositions in AP ∃, we need to read them from
the input tree. Indeed, if p ∈ AP ∃ it means that p is quantified upon in Φ: there is a
subformula ∃op. ϕ of Φ such that p is a subformula of ϕ. The automaton A∃op. ϕs will be
built by narrowing, nondeterminising and projecting Aϕs on p. On a given input tree t,
A∃op. ϕs will thus guess a labelling for p in each node of t and simulate (the nondeterminised
narrowing of) Aϕs on this modified input. Aϕs must therefore read the labelling for p from
its input tree.

ϕ = ¬ϕ′: We obtain Aϕs by dualising Aϕ′

s , which is a classic operation on ATAs.
ϕ = ϕ1 ∨ ϕ2: Because Iϕ = Iϕ1 ∩ Iϕ2 , and each Aϕis works on Xϕi -trees, we need to narrow

them so that they work on Xϕ-trees: for i ∈ {1, 2}, we let Ai := Aϕis ↓Iϕ .
We then build Aϕs by taking the disjoint union of A1 and A2 and adding a new initial
state that nondeterministically chooses which of A1 or A2 to execute on the input tree,
so that L(Aϕs) = L(A1) ∪ L(A2).

ϕ = Eψ: The aim is to build an automaton Aϕs that works on Xϕ-trees and that on input
t, checks for the existence of a path in t↑[n] ! tS,s that satisfies ψ. To do so, Aϕs guesses
a path λ in (S, s). It remembers the current state in S, which provides the labelling for
atomic propositions in APf , and while it guesses λ it follows its projection on Xϕ in its
input tree t, reading the labels to evaluate propositions in AP ∃.
Let max(ψ) = {ϕ1, . . . , ϕn} be the set of maximal state sub-formulas of ψ. In a first step
we see these maximal state sub-formulas as atomic propositions. Formula ψ can thus be
seen as an LTL formula, and we can build a nondeterministic parity word automaton
Wψ = (Qψ,∆ψ, qψι , C

ψ) over alphabet 2max(ψ) that accepts exactly the models of ψ. We
define the ATA A that, given as input a (max(ψ), Xϕ)-tree t, nondeterministically guesses
a path λ in t↑[n] ! tS,s and simulates Wψ on it, assuming that the labels it reads while
following λ ↓Xϕ in its input correctly represent the truth value of formulas in max(ψ)
along λ. Recall that S = (S,R, `S); we define A := (Q, δ, qι, C), where
Q = Qψ × S,
qι = (qψι , s),
C(qψ, s′) = Cψ(qψ), and
for each (qψ, s′) ∈ Q and a ∈ 2max(ψ),

δ((qψ, s′), a) =
∨

q′∈∆ψ(qψ,a)

∨
s′′∈R(s′)

[s′′ ↓Xϕ , (q′, s′′)].

The intuition is that A reads the current label, chooses nondeterministically which
transition to take in Wψ, chooses a next state in S and proceeds in the corresponding
direction in Xϕ. To ensure3 that the path it guesses is not only in tS,s but also in t↑[n],
it is enough to make sure that it always tries to stay inside its input tree t, which is
achieved by letting Q> = ∅ and Q⊥ = Q. Thus, A accepts exactly the max(ϕ)-labelled
Xϕ-trees t in which there exists a path that corresponds to some path in t ↑[n] ! tS,s
that satisfies ψ, where maximal state formulas are considered as atomic propositions.
Now from A we build the automaton Aϕs over Xϕ-trees labelled with real atomic proposi-
tions in AP ∃. In each node it visits, this automaton guesses what should be its labelling
over max(ψ), it simulates A accordingly, and checks that the guesses it makes are correct.

3 Actually this is not very important since the tree t on which our automata will work will always be
such that the domain of t↑[n] contains the domain of tS,s.

14 Quantified CTL with imperfect information

If the path being guessed in t↑[n] ! tS,s is currently in node u ending with state s′, and
Aϕs guesses that ϕi holds in u, it checks this guess by starting a simulation of automaton
Aϕis′ from node v = u↓Xϕ in its input t.
For each s′ ∈ S and each ϕi ∈ max(ψ) we first build Aϕis′ , which works on Xϕi-trees.
Observe that Iϕ = ∩ni=1Iϕi , so that we need to narrow down these automata: We let
Ais′ := Aϕis′ ↓Iϕ= (Qis′ , δis′ , qis′ , Cis′). We also let Ais′ = (Qis′ , δis′ , qis′ , Cis′) be its dualisation,
and we assume w.l.o.g. that all the state sets are pairwise disjoint. We define the ATA
Aϕs = (Q ∪

⋃
i,s′ Qis′ ∪Qis′ , δ′, qι, C

′), where the colours of states are left as they were in
their original automaton, and δ is defined as follows. For states in Qis′ (resp. Qis′), δ
agrees with δis′ (resp. δis′), and for (qψ, s′) ∈ Q and a ∈ 2AP ∃ we let

δ′((qψ, s′), a) =
∨

a′∈2max(ψ)

δ ((qψ, s′), a′) ∧ ∧
ϕi∈a′

δis′(qis′ , a) ∧
∧
ϕi /∈a′

δis′(qis′ , a)

 .

ϕ = ∃op. ϕ′: We build automaton Aϕ′

s that works on Xϕ′-trees; because ϕ is hierarchical,
we have that o ⊆ Iϕ′ and we can narrow down Aϕ′

s to work on Xo-trees and obtain
A1 := Aϕ′

s ↓Xo . By Theorem 20 we can nondeterminise it to get A2, which by Theorem 19
we can project with respect to p, finally obtaining Aϕs := A2⇓p.

We now prove by induction on ϕ that the construction is correct. In each case, we let
t = (τ, `) be an (AP ∃, Xϕ)-tree rooted in s↓Xϕ .

ϕ = p: First, note that Ip = [n], so that t is rooted in s↓Xp= s. Let us consider first the
case where p ∈ APf . By definition of Aps , we have that t ∈ L(Aps) iff p ∈ `S(s). On the
other hand, by definition of the merge operation, of the unfolding, and because AP ∃
and APf are disjoint, we have t↑[n] ! tS,s |= p iff p ∈ `S(s), and we are done. Now if
p ∈ AP ∃: by definition of Aps, we have t ∈ L(Aps) iff p ∈ `(s); also, by definition of the
merge, we have that t↑[n] ! tS,s |= p iff p ∈ `(s), which concludes.

ϕ = ¬ϕ′: trivial.
ϕ = ϕ1 ∨ ϕ2: We have Ai = Aϕis ↓Xϕ , so by Theorem 21 we get that t ∈ L(Ai) iff

t↑Xϕi∈ L(Aϕis), which by induction hypothesis holds iff (t↑Xϕi)↑[n] ! tS,s |=t ϕi, i.e., iff
t↑[n] ! tS,s |=t ϕi. We conclude by reminding that L(Aϕs) = L(A1) ∪ L(A2).

ϕ = Eψ: Suppose that t′ = t↑[n] ! tS,s |=t Eψ. There exists a path λ starting at the root
s of t′ such that t′, λ |= ψ. Again, let max(ψ) be the set of maximal state subformulas of
ϕ, and let w be the infinite word over 2max(ψ) that agrees with n λ on the state formulas
in max(ψ). By definition, Wψ has an accepting execution on w. Now in the acceptance
game of Aϕs on t, Eve can guess the path λ, following λ↓Xϕ in its input t, and she can
also guess the corresponding word w on 2max(ψ) and an accepting execution of Wψ on w.
Let u′ ∈ t′ be a node of λ, s′ its last direction and let u = u′ ↓Xϕ∈ t. Assume that in node
u of the input tree, in a state (qψ, s′) ∈ Q, Adam challenges Eve on some ϕi ∈ max(ψ)
that she assumes to be true in u′, i.e., Adam chooses the conjunct δis′(qis′ , a), where a is
the label of u. Note that in the evaluation game this means that Adam moves to position
(u, (qψ, s′), δis′(qis′ , a)). We want to show that Eve wins from this position.
Let tu (resp. t′u′) be the subtree of t (resp. t′) starting in u (resp. u′)4. It is enough to
show that tu is accepted by Ais′ = Aϕis′ ↓Iϕ . Observe that tu is rooted in the last direction

4 If u = w · x, the subtree tu of t = (τ, `) is defined as tu := (τu, `u) with τu = {x · w′ | w · x · w′ ∈ τ},
and `u(x · w′) = `(w · x · w′): we remove from each node all directions before last(u).

R. Berthon, B. Maubert and A. Murano 15

of u = u′ ↓Iϕ , and since the last direction of u′ is s′ we have that tu is rooted in s′ ↓Iϕ .
Let us write t′′ = tu ↑

Iϕi
s′′ , where s′′ = s′ ↓Iϕi . By Theorem 21, because Ais′ = Aϕis′ ↓Iϕ and

s′ ↓Iϕ= (s′ ↓Iϕi)↓Iϕ , we have that

tu ∈ L(Ais′) iff t′′ ∈ L(Aϕis′). (1)

Since t′′ is rooted in s′ ↓Iϕi we can apply the induction hypothesis on t′′ with ϕi, and we
get that

t′′ ∈ L(Aϕis′) iff t′′ ↑[n] ! tS,s′ |=t ϕi. (2)

Now, because u′ ends in s′ we also have that

t′u′ = t′′ ↑[n] ! tS,s′ . (3)

Putting (1), (2) and (3) together, we obtain that

tu ∈ L(Ais′) iff t′u′ |=t ϕi. (4)

Because we have assumed that Eve guesses w correctly, we also have that t′, u′ |=t ϕi,
i.e., t′u′ |=t ϕi. This, together with (4), gives us that tu is accepted by Ais′ .
Eve thus has a winning strategy from the initial position of the acceptance game
of Ais′ on tu. This initial position is (u, qis′ , δis′(qis′ , a)). Since (u, qis′ , δis′(qis′ , a)) and
(u, (qψ, s′), δis′(qis′ , a)) contain the same node u and transition formula δis′(qis′ , a), a win-
ning strategy in one of these positions5 is also a winning strategy in the other, and
therefore Eve wins Adam’s challenge. With a similar argument, we get that also when
Adam challenges Eve on some ϕi assumed not to be true in node v, Eve wins the challenge.
Finally, Eve wins the acceptance game of Aϕs on t, and thus t ∈ L(Aϕs).
For the other direction, assume that t ∈ L(Aϕs), i.e., Eve wins the evaluation game of
Aϕs on t. Again, let t′ = t↑[n] ! tS,s. A winning strategy for Eve describes a path λ in
tS,s, which is also a path in t′. This winning strategy also defines an infinite word w over
2max(ψ) such that w agrees with λ on the formulas in max(ψ), and it also describes an
accepting run of Wψ on w. Hence t′, λ |=t ψ, and t′ |=t ϕ.

ϕ = ∃op. ϕ′: First, observe that because ϕ is hierarchical, we have that Iϕ = o. Next, by
Theorem 19 we have that

t ∈ L(Aϕs) iff there exists tp ≡p t such that tp ∈ L(A2). (5)

By Theorem 20, L(A2) = L(A1), and since A1 = Aϕ′

s ↓Xo= Aϕ
′

s ↓Xϕ we get by Theorem 21
that

tp ∈ L(A2) iff tp ↑
Xϕ′
y ∈ L(Aϕ

′

s), where y = s↓(Iϕ′\Iϕ). (6)

Now tp and t have the same root, s↓Xϕ . The root of tp ↑
Xϕ′
y is thus (s↓Xϕ , y) = s↓Xϕ′ ,

and we can apply the induction hypothesis on tp ↑
Xϕ′
y with ϕ′:

tp ↑
Xϕ′
y ∈ L(Aϕ

′

s) iff tp ↑
Xϕ′
y ↑[n] ! tS,s |=t ϕ

′. (7)

Now, with (5), (6) and (7) together with the fact that tp ↑
Xϕ′
y ↑[n] = tp ↑[n], we get that

t ∈ L(Aϕs) iff there exists tp ≡p t such that tp ↑[n] ! tS,s |=t ϕ
′. (8)

5 Recall that positional strategies are sufficient in parity games [49].

16 Quantified CTL with imperfect information

Let us prove that the right-hand side of (8) holds if and only if t↑[n] ! tS,s |=t ∃op. ϕ′.
For the first direction, assume that there exists tp ≡p t such that tp ↑[n] ! tS,s |=t ϕ

′.
First, by definition of the merge, because p ∈ AP ∃ and AP ∃ and APf are disjoint, the
p-labelling of tp ↑[n] ! tS,s is determined by the p-labelling of tp ↑[n], which by definition
of the lift is o-uniform. In addition it is clear that tp ↑[n] ! tS,s ≡p t↑[n] ! tS,s, which
concludes this direction.
For the other direction, assume that t↑[n] ! tS,s |=t ∃op. ϕ′: there exists t′p ≡p t↑[n] ! tS,s
such that t′p is o-uniform in p and t′p |=t ϕ

′. Let us write t′p = (τ ′, `′p) and t = (τ, `). We
define tp := (τ, `p) where for each u ∈ τ , if there exists u′ ∈ τ ′ such that u′ ↓o= u, we let

`p(u) =
{
`(u) ∪ {p} if p ∈ `′p(u′)
`(u) \ {p} otherwise.

This is well defined because t′p is o-uniform in p: if two nodes u′, v′ project on u, we
have u′ ≈o v′ and thus they agree on p. In case there is no u′ ∈ τ ′ such that u′ ↓Xϕ= u,
we can let `p(u) = `(u) as this node disappears in t ↑[n] ! tS,s. Clearly, tp ≡p t. Now
we write t′′p = tp ↑[n] ! tS,s and we prove that t′′p = t′p hence t′′p |=t ϕ

′, which concludes.
It is clear that t′′p and t′p have the same domain. Also, because t′p ≡p t ↑[n] ! tS,s
and t′′p = tp ↑[n] ! tS,s, by definition of the merge both agree with tS,s for all atomic
propositions in APf . Because tp ≡p t, and again by definition of the merge, t′′p and t′p also
agree on all atomic propositions in AP ∃ \ {p}. Finally, by definition of tp and because t′p
is o-uniform in p, we get that t′′p and t′p also agree on p, and therefore t′′p = t′p. J

We can now prove Theorem 23. Let (S, s) be a pointed CKS, and let ϕ ∈ QCTL∗i,⊂. By
Lemma 25 one can build an ATA Aϕs such that for every labelled Xϕ-tree t rooted in s↓Xϕ ,
it holds that t ∈ L(Aϕs) iff t↑[n] ! tS,s |=t ϕ. Let τ be the full Xϕ-tree rooted in s↓Xϕ , and
let t = (τ, `∅), where `∅ is the empty labelling. Clearly, t ↑[n] ! tS,s = tS,s, and because
t is rooted in s ↓Xϕ , we have t ∈ L(Aϕs) iff tS,s |=t ϕ. It only remains to build a simple
deterministic tree automaton A over Xϕ-trees such that L(A) = {t}, and check for emptiness
of the alternating tree automaton L(A ∩Aϕs). Because nondeterminisation makes the size of
the automaton gain one exponential for each nested quantifier on propositions, the procedure
is nonelementary, and hardness is inherited from the model-checking problem for QCTL [30].

6 Conclusion and future work

We have introduced the essence of imperfect information in QCTL∗, by adding internal struc-
ture to states of the models and parameterising propositional quantifiers with observational
power over this internal structure. We considered both the structure and tree semantics,
intimately related to the notions of no memory and perfect recall in game strategies, respect-
ively. For the structure semantics we showed that our logic coincides with QCTL in expressive
power, and thus also with MSO, and that the model-checking problem is Pspace-complete, as
for QCTL. For the tree semantics however we showed that our logic is expressively equivalent
to MSO with equal level, and that its model-checking problem is thus undecidable. But we
established, thanks to automata techniques made possible by our modelling choices, that
model checking hierarchical formulas is decidable.

Several future work directions await us. First it would be interesting to study QCTLi
under the amorphous semantics, studied by French for QCTL in [17]. We would also like to
investigate fragments with better complexity, as well as the satisfiability problem for QCTLi.
Then we believe that there may be interesting connections with Chain Logic with equal level,

R. Berthon, B. Maubert and A. Murano 17

a restriction of MSOeq that is decidable on trees. Does it correspond to another interesting
decidable fragment of QCTL∗i ? Finally, we aim at exploiting our last result in various logics
for strategic reasoning with imperfect information, such as ATL∗sc and SL.

References
1 E. A.Emerson and C.-L. Lei. Modalities for model checking: Branching time strikes back.

In PL’85, pages 84–96. ACM Press, 1985.
2 T. Ågotnes, V. Goranko, and W. Jamroga. Alternating-Time Temporal Logics with Irre-

vocable Strategies. In TARK’07, pages 15–24, 2007.
3 R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-Time Temporal Logic. JACM,

49(5):672–713, 2002.
4 Dietmar Berwanger, Anup Basil Mathew, and Marie van den Bogaard. Hierarchical inform-

ation patterns and distributed strategy synthesis. In Automated Technology for Verification
and Analysis - 13th International Symposium, ATVA 2015, Shanghai, China, October 12-
15, 2015, Proceedings, pages 378–393, 2015. doi:10.1007/978-3-319-24953-7_28.

5 T. Brihaye, A. Da Costa Lopes, F. Laroussinie, and N. Markey. ATL with Strategy Contexts
and Bounded Memory. In LFCS’09, LNCS 5407, pages 92–106. Springer, 2009.

6 P. Čermák, A. Lomuscio, F. Mogavero, and A. Murano. MCMAS-SLK: A Model Checker
for the Verification of Strategy Logic Specifications. In CAV’14, LNCS 8559, pages 524–531.
Springer, 2014.

7 K. Chatterjee, T.A. Henzinger, and N. Piterman. Strategy Logic. Information and Com-
putation, 208(6):677–693, 2010.

8 E.M. Clarke and E.A. Emerson. Design and Synthesis of Synchronization Skeletons Using
Branching-Time Temporal Logic. In LP’81, LNCS 131, pages 52–71. Springer, 1981.

9 E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT Press, 2002.
10 A. Da Costa, F. Laroussinie, and N. Markey. ATL with Strategy Contexts: Expressiveness

and Model Checking. In FSTTCS’10, LIPIcs 8, pages 120–132, 2010.
11 M. Dastani and W. Jamroga. Reasoning about strategies of multi-agent programs. In

AAMAS’10, pages 997–1004. IFAAMAS, 2010.
12 C. Dima and F. L. Tiplea. Model-checking ATL under imperfect information and perfect

recall semantics is undecidable. CoRR, abs/1102.4225, 2011.
13 C. Dima and F.L. Tiplea. Model-checking ATL under Imperfect Information and Perfect

Recall Semantics is Undecidable. Technical report, arXiv, 2011.
14 C. C. Elgot and M. O. Rabin. Decidability and undecidability of extensions of second

(first) order theory of (generalized) successor. J. Symb. Log., 31(2):169–181, 1966. URL:
http://dx.doi.org/10.2307/2269808, doi:10.2307/2269808.

15 E Allen Emerson and A Prasad Sistla. Deciding branching time logic. In Proceedings of
the sixteenth annual ACM symposium on Theory of computing, pages 14–24. ACM, 1984.

16 E.A. Emerson and J.Y. Halpern. “Sometimes” and “Not Never” Revisited: On Branching
Versus Linear Time. JACM, 33(1):151–178, 1986.

17 Tim French. Decidability of quantifed propositional branching time logics. In Australian
Joint Conference on Artificial Intelligence, pages 165–176. Springer, 2001.

18 Joseph Y Halpern and Moshe Y Vardi. The complexity of reasoning about knowledge and
time. i. lower bounds. Journal of Computer and System Sciences, 38(1):195–237, 1989.

19 W. Jamroga, S. Mauw, and M. Melissen. Fairness in non-repudiation protocols. In Pro-
ceedings of STM’11, volume 7170 of LNCS, pages 122–139, 2012.

20 W. Jamroga and A. Murano. On Module Checking and Strategies. In AAMAS’14, pages
701–708. IFAAMAS, 2014.

21 S. Kremer and J.-F. Raskin. A game-based verification of non-repudiation and fair exchange
protocols. Journal of Computer Security, 11(3), 2003.

http://dx.doi.org/10.1007/978-3-319-24953-7_28
http://dx.doi.org/10.2307/2269808
http://dx.doi.org/10.2307/2269808

18 Quantified CTL with imperfect information

22 O Kupermann and M.Y Vardi. Synthesizing distributed systems. In Logic in Computer
Science, 2001. Proceedings. 16th Annual IEEE Symposium on, pages 389–398. IEEE, 2001.

23 O. Kupferman. Augmenting branching temporal logics with existential quantification over
atomic propositions. In CAV’95, LNCS 939, pages 325–338. Springer, 1995.

24 O. Kupferman, P. Madhusudan, P. S. Thiagarajan, and M. Y. Vardi. Open systems in
reactive environments: Control and synthesis. In CONCUR’00, LNCS 1877, pages 92–107.
Springer, 2000.

25 O. Kupferman and M. Y. Vardi. Module checking revisited. In CAV’97, volume 1254 of
LNCS, pages 36–47. Springer, 1997.

26 O. Kupferman, M.Y. Vardi, and P. Wolper. An Automata Theoretic Approach to
Branching-Time Model Checking. JACM, 47(2):312–360, 2000.

27 O. Kupferman, M.Y. Vardi, and P. Wolper. Module Checking. IC, 164(2):322–344, 2001.
28 Orna Kupferman and Moshe Y Vardi. Church’s problem revisited. Bulletin of Symbolic

Logic, pages 245–263, 1999.
29 Orna Kupferman, Moshe Y. Vardi, and Pierre Wolper. An automata-theoretic approach

to branching-time model checking. J. ACM, 47(2):312–360, 2000.
30 François Laroussinie and Nicolas Markey. Quantified CTL: expressiveness and complexity.

Logical Methods in Computer Science, 10(4), 2014. URL: http://dx.doi.org/10.2168/
LMCS-10(4:17)2014, doi:10.2168/LMCS-10(4:17)2014.

31 Hans Läuchli and Christian Savioz. Monadic second order definable relations on the binary
tree. The Journal of Symbolic Logic, 52(01):219–226, 1987.

32 A. Lomuscio and F. Raimondi. MCMAS : A model checker for multi-agent systems. In
TACAS’06, LNCS 4314, pages 450–454, 2006.

33 A.D.C. Lopes, F. Laroussinie, and N. Markey. ATL with Strategy Contexts: Expressive-
ness and Model Checking. In FSTTCS’10, LIPIcs 8, pages 120–132. Leibniz-Zentrum fuer
Informatik, 2010.

34 F. Mogavero, A. Murano, G. Perelli, and M.Y. Vardi. Reasoning About Strategies: On the
Model-Checking Problem. TOCL, 15(4):34:1–42, 2014.

35 F. Mogavero, A. Murano, and M.Y. Vardi. Reasoning About Strategies. In FSTTCS’10,
LIPIcs 8, pages 133–144. Leibniz-Zentrum fuer Informatik, 2010.

36 F. Mogavero, A. Murano, and M.Y. Vardi. Relentful Strategic Reasoning in Alternating-
Time Temporal Logic. In LPAR’10, LNAI 6355, pages 371–387. Springer, 2010.

37 David E. Muller and Paul E. Schupp. Simulating alternating tree automata by nondetermin-
istic automata: New results and new proofs of the theorems of rabin, mcnaughton and safra.
Theor. Comput. Sci., 141(1&2):69–107, 1995.

38 Gary Peterson, John Reif, and Salman Azhar. Lower bounds for multiplayer noncooperative
games of incomplete information. Computers & Mathematics with Applications, 41(7):957–
992, 2001.

39 Gary Peterson, John Reif, and Salman Azhar. Decision algorithms for multiplayer nonco-
operative games of incomplete information. Computers & Mathematics with Applications,
43(1):179–206, 2002.

40 Sophie Pinchinat and Stéphane Riedweg. A decidable class of problems for control under
partial observation. Information Processing Letters, 95(4):454–460, 2005.

41 A. Pnueli. The Temporal Logic of Programs. In FOCS’77, pages 46–57. IEEE Computer
Society, 1977.

42 A. Pnueli and R. Rosner. On the Synthesis of a Reactive Module. In POPL’89, pages
179–190. Association for Computing Machinery, 1989.

43 Michael O Rabin. Decidability of second-order theories and automata on infinite trees.
Transactions of the american Mathematical Society, 141:1–35, 1969.

http://dx.doi.org/10.2168/LMCS-10(4:17)2014
http://dx.doi.org/10.2168/LMCS-10(4:17)2014
http://dx.doi.org/10.2168/LMCS-10(4:17)2014

R. Berthon, B. Maubert and A. Murano 19

44 John H. Reif. The complexity of two-player games of incomplete information. J. Comput.
Syst. Sci., 29(2):274–301, 1984.

45 A.P. Sistla. Theoretical Issues in the Design and Cerification of Distributed Systems. PhD
thesis, Harvard University, Cambridge, MA, USA, 1983.

46 W. Thomas. Infinite trees and automaton-definable relations over omega-words. Theor.
Comput. Sci., 103(1):143–159, 1992.

47 W. van der Hoek and M. Wooldridge. Cooperation, knowledge and time: Alternating-time
Temporal Epistemic Logic and its applications. Studia Logica, 75(1):125–157, 2003.

48 M.Y. Vardi and L.J. Stockmeyer. Improved upper and lower bounds for modal logics of
programs: Preliminary report. In STOC’85, pages 240–251, 1985.

49 Wieslaw Zielonka. Infinite games on finitely coloured graphs with applications to automata
on infinite trees. Theor. Comput. Sci., 200(1-2):135–183, 1998.

	Introduction
	Preliminaries
	Kripke structures and trees
	QCTL*, syntax and semantics
	Structure semantics
	Tree semantics

	QCTL* with imperfect information
	Compound Kripke structures
	QCTL*i, syntax and semantics
	Structure semantics
	Tree semantics

	Expressiveness
	QCTL*i, QCTLi and QCTL
	QCTLi and MSO with equal level

	Model checking QCTLi
	Structure semantics
	Tree semantics
	Alternating tree automata
	A decidable fragment: hierarchy on observations

	Conclusion and future work

