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Università degli Studi di Napoli “Federico II”

Abstract

Two distinct semantics have been considered for knowledge
in the context of strategic reasoning, depending on whether
players know each other’s strategy or not. In the former
case, that we call the informed semantics, distributed syn-
thesis for epistemic temporal specifications is undecidable,
already on systems with hierarchical information. However,
for the other, uninformed semantics, the problem is decid-
able on such systems. In this work we generalise this re-
sult by introducing an epistemic extension of Strategy Logic
with imperfect information. The semantics of knowledge op-
erators is uninformed, and captures agents that can change
observation power when they change strategies. We solve
the model-checking problem on a class of “hierarchical in-
stances”, which provides a solution to a vast class of strategic
problems with epistemic temporal specifications, such as dis-
tributed or rational synthesis, on hierarchical systems.

Introduction
Logics of programs, many of which are based on classic
temporal logics such as LTL or CTL, are meant to specify
desirable properties of algorithms. When considering dis-
tributed systems, an important aspect is that each processor
has a partial, local view of the whole system, and can only
base its actions on the available information. Many authors
have argued that this imperfect information calls for logical
formalisms that would allow the modelling and reasoning
about what different processes know of the system, and of
other processes’ state of knowledge. For instance, Halpern
and Moses wrote in (Halpern and Moses 1990):

“[. . . ] explicitly reasoning about the states of knowledge
of the components of a distributed system provides a more
general and uniform setting that offers insight into the basic
structure and limitations of protocols in a given system.”

To reason about knowledge and time, temporal logics
have been extended with the knowledge operator Ka from
epistemic logic, giving rise to a family of temporal epistemic
logics (Fagin et al. 1995), which have been applied to, e.g.,
information flow and cryptographic protocols (van der Mey-
den and Su 2004; Halpern and O’Neill 2005), coordination
problems in distributed systems (Neiger and Bazzi 1992)
and motion planning in robotics (Brafman et al. 1997).
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Distributed systems are often open systems, i.e., they in-
teract with an environment and must react appropriately to
actions taken by this environment. As a result, if we take
the analogy where processors are players of a game, and
processes are strategies for the processors, the task of syn-
thesising distributed protocols can be seen as synthesising
winning strategies in multi-player games with imperfect in-
formation. This analogy between the two settings is well
known, and Ladner and Reif already wrote in (Ladner and
Reif 1986) that “Distributed protocols are equivalent to (i.e.,
can be formally modelled as) games”.

To reason about a certain type of game-related proper-
ties in distributed systems, Alternating-time Temporal Logic
(ATL) was introduced (Alur, Henzinger, and Kupferman
2002). It can express the existence of strategies for coalitions
of players in multi-player games, but cannot express some
important game-theoretic concepts, such as the existence of
Nash equilibria. To remedy this, Strategy Logic (SL) (Chat-
terjee, Henzinger, and Piterman 2010; Mogavero et al. 2014)
was defined. Treating strategies as explicit first-order objects
makes it very expressive, and it can for instance talk about
Nash equilibria in a very natural way. These logics have been
studied both for players with perfect information and play-
ers with imperfect information, and in the latter case either
with the assumption that agents have no memory, or that
they remember everything they observe. This last assump-
tion, called perfect recall, is the one usually considered in
distributed synthesis (Pnueli and Rosner 1990) and games
with imperfect information (Reif 1984), and it is also cen-
tral in logics of knowledge and time (Fagin et al. 1995). It is
the one we consider in this work.

In order to reason about knowledge and strategic abilities
in distributed systems, epistemic temporal logics and strate-
gic logics have been combined. In particular, both ATL and
SL have been extended with knowledge operators (van der
Hoek and Wooldridge 2003; Jamroga and van der Hoek
2004; Belardinelli 2015; Dima, Enea, and Guelev 2010;
Belardinelli et al. 2017a; 2017b). However, few decidable
cases are known for the model checking of these logics with
imperfect information and perfect recall. This is not surpris-
ing since strategic logics typically can express the existence
of distributed strategies, a problem known to be undecid-
able for perfect recall, already for purely temporal specifica-
tions (Peterson and Reif 1979; Pnueli and Rosner 1990).



Semantics of knowledge with strategies. Mixing knowl-
edge and strategies raises intricate questions of semantics.
As a matter of fact, we find in the litterature two distinct
semantics for epistemic operators in strategic contexts, one
in works on distributed synthesis from epistemic temporal
specifications, and another one in epistemic strategic logics.
To explain in what they differ, let us first recall the seman-
tics of the knowledge operator in epistemic temporal logics:
a formulaKaϕ holds in a history h (finite sequence of states)
of a system if ϕ holds in all histories h′ that agent a cannot
distinguish from h. In other words, agent a knows that ϕ
holds if it holds in all histories that may be the current one
according to what she observed. Now consider that the sys-
tem is a multi-player game, and fix a strategy σb for some
player b. Two semantics are possible for Ka: one could say
thatKaϕ holds if ϕ holds in all possible histories that are in-
distinguishable to the current one, as in epistemic temporal
logics, or one could restrict attention to those in which player
b follows σb, discarding indistinguishable histories that are
not consistent with σb. In the latter case, one may say that
player a’s knowledge is refined by the knowledge of σb, i.e.,
she knows that player b is using strategy σb, and she has the
ability to refine her knowledge with this information, elim-
inating inconsistent possible histories. In the following this
is what we will be referring to when saying that an agent
knows some other agent’s strategy. We shall also refer to the
semantics where a knows σb as the informed semantics, and
that in which she ignores it as the uninformed semantics.

The two semantics are relevant as they model different
reasonable scenarios. For instance if players collaborate and
have the ability to communicate, they may share their strate-
gies with each other. But in many cases, components of a
distributed system each receive only their own strategy, and
thus are ignorant of other components’ strategies.

All epistemic extensions of ATL and SL we know of
consider the uninformed semantics. In contrast, works on
distributed synthesis from epistemic temporal specifications
use the informed semantics (van der Meyden and Vardi
1998; van der Meyden and Wilke 2005), even though it is not
so obvious that they do. Indeed these works consider speci-
fications in classic epistemic temporal logic, without strate-
gic operators. But they ask for the existence of distributed
strategies so that such specifications hold in the system re-
stricted to the outcomes of these strategies. This corresponds
to what we call the informed semantics, as the semantics of
knowledge operators is, in effect, restricted to outcomes of
the strategies that are being synthesised.

We only know of two works that discuss these two se-
mantics. In (Bozzelli, Maubert, and Pinchinat 2015) two
knowledge-like operators are studied, one for each seman-
tics, but distributed synthesis is not considered. More inter-
estingly, Puchala already observes in (Puchala 2010) that the
distributed synthesis problem studied in (van der Meyden
and Vardi 1998; van der Meyden and Wilke 2005) consid-
ers the informed semantics. While the problem is undecid-
able for this semantics even on hierarchical systems (van der
Meyden and Wilke 2005), Puchala sketches a proof that the
problem becomes decidable on the class of hierarchical sys-
tems when the uninformed semantics is used.

Contributions. We introduce a logic for reasoning about
knowledge and strategies. Our Epistemic Strategy Logic
(ESL) is based on Strategy Logic, and besides boolean and
temporal operators, it contains the imperfect-information
strategy quantifier 〈〈x〉〉o from SLii (Berthon et al. 2017),
which reads as “there exists a strategy x with observation
o”, and epistemic operators Ka for each agent a. Our logic
allows reasoning about agents whose means of observing
the system changes over time, as agents may successively
use strategies associated with different observations. This
can model, for instance, an agent that is granted higher se-
curity clearance, giving her access to previously hidden in-
formation. The semantics of our epistemic operators takes
into account agents’ changes of observational power. ESL
also contains the outcome quantifier A from Branching-time
Strategy Logic (BSL) (Knight and Maubert 2015), which
quantifies on outcomes of strategies currently used by the
agents, and the unbinding operator (a, ?), which frees an
agent from her current strategy. The latter was introduced
in (Laroussinie and Markey 2015) for ATL with strategy
context and is also present in BSL. The outcome quanti-
fier together with the unbinding operator allow us to express
branching-time temporal properties without resorting to ar-
tificial strategy quantifications which may either affect the
semantics of agents’ knowledge or break hierarchicality.

We solve the model-checking problem for hierarchical in-
stances of ESL. As in SLii, hierarchical instances are for-
mula/model pairs such that, as one goes down the syntactic
tree of the formula, observations annotating strategy quan-
tifiers 〈〈x〉〉o can only become finer. In addition, in ESL we
require that knowledge operators do not refer to (outcomes
of) strategies quantified higher in the formula.

Any problem which can be expressed as hierarchical in-
stances of our logic is thus decidable, and since ESL is very
expressive such problems are many. A first corollary is an
alternative proof that distributed synthesis from epistemic
temporal specifications with uninformed semantics is decid-
able on hierarchical systems. Puchala announced this result
in (Puchala 2010), but we provide a stronger result by going
from linear-time to branching-time epistemic specifications.
We also allow for nesting of strategic operators in epistemic
ones, as long as hierarchicality is preserved and epistemic
formulas do not refer to previously quantified strategies. An-
other corollary is that rational synthesis (Kupferman, Perelli,
and Vardi 2016; Condurache et al. 2016) with imperfect in-
formation is decidable on hierarchical systems for epistemic
temporal objectives with uninformed semantics.

Our approach to solve the model-checking problem for
our logic extends that followed in (Laroussinie and Markey
2015; Berthon et al. 2017), which consists in “compiling”
the strategic logic under study into an opportune variant
of Quantified CTL∗, or QCTL∗ for short (Laroussinie and
Markey 2014). This is an extension of CTL∗ with second-
order quantification on propositions which serves as an in-
termediary, low-level logic between strategic logics and tree
automata. In (Laroussinie and Markey 2015), model check-
ing ATL∗ with strategy context is proved decidable by reduc-
tion to QCTL∗. In (Berthon et al. 2017), model checking
SLii is proved decidable for a class of hierarchical instances



by reduction to the hierarchical fragment of an imperfect in-
formation extension of QCTL∗, called QCTL∗ii. In this work
we define EQCTL∗ii, which extends further QCTL∗ii with
epistemic operators and an operator of observation change
introduced recently in (Barrière et al. 2018) in the context of
epistemic temporal logics. We define the hierarchical frag-
ment of EQCTL∗ii, which strictly contains that of QCTL∗ii,
and solve its model-checking problem for this fragment.

Related work. We know of five other logics called Epis-
temic Strategy Logic. In (Huang and Van Der Meyden
2014), epistemic temporal logic is extended with a first-
order quantification ∃x on points in runs of the system and
an operator ei(x) that compares local state i at x and at the
current point. When interpreted on systems where strategies
are encoded in local states, this logic can express existence
of strategies and what agents know about it. However it only
concerns memoryless strategies. Strategy Logic is extended
with epistemic operators in (Cermák et al. 2014), but they
also consider memoryless agents. (Belardinelli 2015) ex-
tends a fragment of SL with epistemic operators, and consid-
ers perfect-recall strategies, but model checking is not stud-
ied. The latter logic is extended in (Belardinelli et al. 2017a),
in which its model-checking problem is solved on the class
of broadcast systems. In (Knight and Maubert 2015) SL is
also extended with epistemic operators and perfect-recall
agents. Their logic does not require strategies to be uniform,
but this requirement can be expressed in the language. How-
ever no decidability result is provided. The result we present
here is the first for an epistemic strategic logic with perfect
recall on hierarchical systems. In addition, ours is the first
epistemic strategic logic to allow for changes of observa-
tional power.

Plan. We first define ESL and hierarchical instances, and
announce our main result. Next we introduce EQCTL∗ii and
solve the model-checking problem for its hierarchical frag-
ment. We then establish our main result by reducing model
checking hierarchical instances of ESL to model checking
hierarchical EQCTL∗ii. We finally present two corollaries,
exemplifying what our logic can express, and we finish with
a discussion on the semantics of knowledge and strategies.

Notations

Let Σ be an alphabet. A finite (resp. infinite) word over Σ
is an element of Σ∗ (resp. Σω). The length of a finite word
w = w0w1 . . . wn is |w| := n + 1, last(w) := wn is its
last letter, and we note ε for the empty word. Given a finite
(resp. infinite) word w and 0 ≤ i ≤ |w| (resp. i ∈ N), we
let wi be the letter at position i in w, w≤i is the prefix of w
that ends at position i and w≥i is the suffix of w that starts
at position i. We write w 4 w′ if w is a prefix of w′, and w4

is the set of finite prefixes of word w. Finally, the domain
of a mapping f is written dom(f), and for n ∈ N we let
[n] := {i ∈ N : 1 ≤ i ≤ n}.

We fix for the rest of the paper a number of parameters for
our logics and models: AP is a finite set of atomic proposi-
tions, Ag is a finite set of agents or players, Var is a finite set
of variables and Obs is a finite set of observation symbols.

These data are implicitly part of the input for the model-
checking problems we consider.

Epistemic Strategy Logic
In this section we introduce our epistemic extension of Strat-
egy Logic with imperfect information.

Models
The models of ESL are essentially the same as those of
SLii, i.e., concurrent game structures extended by an obser-
vation interpretation O, that maps each observation symbol
o ∈ Obs to an equivalence relation O(o) over positions of
the game structure. However models in ESL contain, in ad-
dition, an initial observation for each player. This initial ob-
servation may change if the player receives a strategy corre-
sponding to a different observation.

Definition 1 (CGSii). A concurrent game structure with
imperfect information (or CGSii for short) is a structure
G = (Ac, V, E, `,O, vι,oι) where

• Ac is a finite non-empty set of actions,
• V is a finite non-empty set of positions,
• E : V × AcAg → V is a transition function,
• ` : V → 2AP is a labelling function,
• O : Obs → V × V is an observation interpretation, and

for each o ∈ Obs, O(o) is an equivalence relation,
• vι ∈ V is an initial position, and
• oι ∈ ObsAg is a tuple of initial observations.

Two positions being equivalent for relation O(o) means
that a player using a strategy with observation o cannot dis-
tinguish them. In the following we may write ∼o for O(o)
and v ∈ G for v ∈ V .

Joint actions. When in a position v ∈ V , each player a
chooses an action ca ∈ Ac and the game proceeds to po-
sition E(v, c), where c ∈ AcAg stands for the joint action
(ca)a∈Ag. If c = (ca)a∈Ag, we let ca denote ca for a ∈ Ag.

Plays and strategies. A finite (resp. infinite) play is a finite
(resp. infinite) word ρ = v0 . . . vn (resp. π = v0v1 . . .) such
that v0 = vι and for all i with 0 ≤ i < |ρ| − 1 (resp. i ≥ 0),
there exists a joint action c such that E(vi, c) = vi+1. We
let Plays be the set of finite plays. A strategy is a function
σ : Plays→ Ac, and we let Str be the set of all strategies.

Assignments. An assignment χ : Ag∪Var ⇀ Str is a partial
function assigning to each player and variable in its domain
a strategy. For an assignment χ, a player a and a strategy
σ, χ[a 7→ σ] is the assignment of domain dom(χ) ∪ {a}
that maps a to σ and is equal to χ on the rest of its domain,
and χ[x 7→ σ] is defined similarly, where x is a variable;
also, χ[a 7→?] is the assignment of domain dom(χ)\{a}, on
which it is equal to χ.

Outcomes. For an assignment χ and a finite play ρ, we let
out(χ, ρ) be the set of infinite plays that start with ρ and
are then extended by letting players follow the strategies as-
signed by χ. Formally, out(χ, ρ) is the set of infinite plays
of the form ρ · v1v2 . . . such that for all i ≥ 0, there exists c



such that for all a ∈ dom(χ) ∩ Ag, ca ∈ χ(a)(ρ · v1 . . . vi)
and vi+1 = E(vi, c), with v0 = last(ρ).

Synchronous perfect recall. Players with perfect recall re-
member the whole history of a play. Each observation rela-
tion is thus extended to finite plays as follows: ρ ≈o ρ′ if
|ρ| = |ρ′| and ρi ∼o ρ′i for every i ∈ {0, . . . , |ρ| − 1}.
Uniform strategies. For o ∈ Obs, an o-strategy is a strategy
σ : V + → Ac such that σ(ρ) = σ(ρ′) whenever ρ ≈o ρ′.
For o ∈ Obs we let Stro be the set of all o-strategies.

Syntax
ESL extends SLii with knowledge operators Ka for each
agent a ∈ Ag, and the outcome quantifier from Branching-
time Strategy Logic, introduced in (Knight and Maubert
2015), which quantifies on outcomes of the currently fixed
strategies. While in SL temporal operators could only be
evaluated in contexts where all agents were assigned to a
strategy, this outcome quantifier allows for evaluation of
(branching-time) temporal properties on partial assignments
of strategies to agents. This outcome quantifier can be sim-
ulated in usual, linear-time variants of Strategy Logic, by
quantifying on strategies for agents who do not currently
have one. But in the context of imperfect information, where
strategy quantifiers are parameterised by an observation, this
may cause to either break the hierarchy or artificially modify
an agent’s observation, which affects his knowledge.
Definition 2 (ESL Syntax). The syntax of ESL is defined by
the following grammar:

ϕ : p | ¬ϕ | ϕ ∨ ϕ | 〈〈x〉〉oϕ | (a, x)ϕ | (a, ?)ϕ | Kaϕ | Aψ
ψ : ϕ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ,

where p ∈ AP, x ∈ Var, o ∈ Obs and a ∈ Ag.
Formulas of type ϕ are called history formulas, those of

type ψ are path formulas. We may use usual abbreviations
> := p ∨ ¬p, ⊥:= ¬>, ϕ→ ϕ′ := ¬ϕ ∨ ϕ′, Fϕ := >Uϕ,
Gϕ := ¬F¬ϕ, [[x]]oϕ := ¬〈〈x〉〉o¬ϕ and Eψ := ¬A¬ψ.

A variable x appears free in a formula ϕ if it appears out
of the scope of a strategy quantifier. We let free(ϕ) be the
set of variables that appear free in ϕ. An assignment χ is
variable-complete for a formula ϕ if its domain contains all
free variables in ϕ. Finally, a sentence is a history formula ϕ
such that free(ϕ) = ∅.
Remark 1. Without loss of generality we can assume that
each strategy variable x is quantified at most once in an ESL
formula. Thus, each variable x that appears in a sentence is
uniquely associated to a strategy quantification 〈〈x〉〉o, and
we let ox = o.

Discussion on the syntax. In SLii as well as in ESL, the ob-
servation used by a strategy is specified at the level of strat-
egy quantification: 〈〈x〉〉oϕ reads as “there exists a strategy
x with observation o such that ϕ holds”. When a strategy
with observation o is assigned to some agent a via a bind-
ing (a, x), it seems natural to consider that agent a starts
observing the system with observation o. As a result agents
can change observation when they change strategy, and thus
they can observe the game with different observation powers

along a same play. This contrasts with most of the literature
on epistemic temporal logics, where each agent’s observa-
tion power is usually fixed in the model.

Epistemic relations with changing observations
Dynamic observation change has been studied recently in
the context of epistemic temporal logics in (Barrière et al.
2018), from which come the following definitions.

First, dealing with the possibility to dynamically change
observation requires to remember which observation each
agent had at each point in time.

Observation records. An observation record ra for agent
a ∈ Ag is a finite word over N×Obs, i.e., ra ∈ (N×Obs)∗.

If at time n, an agent a with current observation record ra
receives a strategy with observation o, her new observation
record is ra · (o, n). The observation record ra[n] is the pro-
jection of ra on {n} × Obs, and represents the sequence of
observation changes that occurred at time n.

Given an observation record for each agent r = (ra)a∈Ag,
we note ra for ra. We say that an observation record r stops
at time n if ra[m] is empty for all m > n, and r stops at
a finite play ρ if it stops at time |ρ| − 1. If r stops at time
n, we let r · (n, o)a be the observation record r where ra is
replaced with ra · (n, o).

At each step of a play, each agent observes the new po-
sition with her current observation power. Then, if an agent
changes strategy, she observes the same position with the ob-
servation of the new strategy, which may be different from
the previous one. Also, due to the syntax of ESL, an agent
may change observation several times before the next step.
Therefore, the observation sequence osa(r, n) with which
agent a observes the game at time n consists of the observa-
tion she had when the n-th move is taken, plus those corre-
sponding to strategy changes that occur before the next step.
It is defined by induction on n:

osa(r, 0) = o1 · . . . · ok,
if ra[0] = (0, o1) · . . . · (0, ok), and

osa(r, n+ 1) = last(osa(r, n)) · o1 · . . . · ok,
if ra[n+ 1] = (n+ 1, o1) · . . . · (n+ 1, ok).

If at time n agent a does not receive a new strategy,
osa(r, n) contains only one observation, which will be ei-
ther that of the last strategy taken by the agent or the agent’s
initial observation, given by the CGSii.

The indistinguishability relation for synchronous perfect-
recall with observation change is defined as follows.

Definition 3. For ρ and ρ′ two finite plays and r an ob-
servation record, ρ and ρ′ are observationally equivalent
to agent a, written ρ ≈r

a ρ′, if |ρ| = |ρ′| and, for every
i ∈ {0, . . . , |ρ| − 1}, for every o ∈ osa(r, i), ρi ∼o ρ′i.
Remark 2. Observe that, at a given point in time, the order
in which an agent observes the game with different observa-
tion does not matter. Intuitively, all that matters is the total
information gathered before the next step. Also, in the case
of an empty observation record, the above definition corre-
sponds to blind agents, for which all finite plays of same



length are indistinguishable. However in the following ob-
servation records will never be empty, but will always be
initialised with the initial observations given by the model.

Semantics
We now define the semantics of ESL.
Definition 4 (ESL Semantics). The semantics of a history
formula is defined on a game G (omitted below), an assign-
ment χ variable-complete for ϕ, and a finite play ρ. For a
path formula ψ, the finite play is replaced with an infinite
play π and an index i ∈ N. The definition is as follows:

χ, r, ρ |= p if p ∈ `(last(ρ))
χ, r, ρ |= ¬ϕ if χ, r, ρ 6|= ϕ
χ, r, ρ |= ϕ ∨ ϕ′ if χ, r, ρ |= ϕ or χ, r, ρ |= ϕ′

χ, r, ρ |= 〈〈x〉〉oϕ if ∃σ ∈ Stro. χ[x 7→ σ], r, ρ |= ϕ
χ, r, ρ |= (a, x)ϕ if χ[a 7→ χ(x)], r, ρ |= ϕ
χ, r, ρ |= (a, ?)ϕ if χ[a 7→?], r, ρ |= ϕ
χ, r, ρ |= Kaϕ if ∀ρ′ ∈ Plays s.t. ρ′ ≈r

a ρ,
χ, r, ρ′ |= ϕ

χ, r, ρ |= Aψ if ∀π ∈ out(χ, ρ),
χ, r, π, |ρ| − 1 |= ψ

χ, r, π, i |= ϕ if χ, r, π≤i |= ϕ
χ, r, π, i |= ¬ψ if χ, r, π, i 6|= ψ
χ, r, π, i |= ψ ∨ ψ′ if χ, r, π, i |= ψ or χ, r, π, i |= ψ′

χ, r, π, i |= Xψ if χ, r, π, i+ 1 |= ψ
χ, r, π, i |= ψUψ′ if ∃ j ≥ i s.t. χ, r, π, j |= ψ′ and

∀ k ∈ [i, j[, χ, r, π, k |= ψ

The satisfaction of a sentence is independent of the as-
signment; for an ESL sentence ϕ we thus let G, r, ρ |= ϕ if
G, χ, r, ρ |= ϕ for some assignment χ. We also write G |= ϕ
if G, rι, vι |= ϕ, where rι = (0,oιa)a∈Ag.

Discussion on the semantics. First, the semantics of the
knowledge operator corresponds, as announced, to what we
called uninformed semantics in the introduction. Indeed it is
not restricted to outcomes of strategies followed by the play-
ers: Kaϕ holds in a finite play ρ if ϕ holds in all finite plays
in the game that are indistinguishable to ρ for agent a.

Also, note that the relation for perfect recall with obser-
vation change, and thus also observation records, are only
used in the semantics of the knowledge operators. As usual,
a strategy with observation o has to be uniform with regards
to the classic perfect-recall relation ∼o for static observa-
tions, even if it is assigned to an agent who previously had a
different observation. The reasons to do so are twofold.

First, we do not see any other natural definition. One may
think of parameterising strategy quantifiers with observation
records instead of mere observations, but this would require
to know at the level of quantification at which points in time
the strategy will be given to an agent, and what previous ob-
servations this agent would have had, which is not realistic.

More importantly, when one asks for the existence of a
uniform strategy after some finite play ρ, it only matters how
the strategy is defined on suffixes of ρ, and thus the unifor-
mity constraint also is relevant only on such plays. But for
such plays, the “fixed observation” indistinguishability re-
lation is the same as the “dynamic observation” one. More

precisely, if agent a receives observation o at the end of ρ,
i.e., last(ra) = (|ρ|−1, o), then for all finite plays ρ′, ρ′′ that
are suffixes of ρ, we have ρ′ ≈o ρ′′ if, and only if, ρ′ ≈r

a ρ
′′.

Indeed, since we use the S5 semantics of knowledge, i.e.,
indistinguishability relations are equivalence relations, the
prefix ρ is always related to itself, be it for ≈r

a or ≈o, and
after ρ both relations only consider observation o.

Model checking and hierarchical instances
We now introduce the decision problem studied in this paper,
i.e., the model-checking problem for ESL.

Model checking. An instance is a pair (Φ,G) where Φ is
a sentence of ESL and G is a CGSii. The model-checking
problem for ESL is the decision problem that, given an in-
stance (Φ,G), returns ‘yes’ if G |= Φ, and ‘no’ otherwise.

SLii can be translated into ESL, by adding outcome quan-
tifiers before temporal operators. Since model checking SLii
is undecidable (Berthon et al. 2017), we get the following
result:
Theorem 1. Model checking ESL is undecidable.
Hierarchical instances. We now isolate a sub-problem ob-
tained by restricting attention to hierarchical instances. In-
tuitively, an ESL-instance (Φ,G) is hierarchical if, as one
goes down a path in the syntactic tree of Φ, the observa-
tions parameterising strategy quantifiers become finer. In ad-
dition, epistemic formulas must not talk about currently de-
fined strategies.

Given an ESL sentence Φ and a syntactic subformula ϕ
of Φ, by parsing Φ’s syntactic tree one can define the set
Ag(ϕ) of agents who are bound to a strategy at the level of
ϕ, as well as where in Φ these strategies are quantified upon.
Definition 5. Let Φ be an ESL sentence. A subformulaKaϕ
is free if for every subformula Aψ of ϕ, the current strategy
of each agent in Ag(Aψ) is quantified within ϕ.

In other words, an epistemic subformula Kaϕ is free if it
does not talk about strategies that are quantified before it.
Example 1. If Φ = 〈〈x〉〉o(a, x)KaAXp, then KaAXp is
not free in Φ, because at the level of A agent a is bound to
strategy x which is quantified “outside” of KaAXp. But if
Φ = 〈〈x〉〉o(a, x)Ka(a, ?)AXp, then Ka(a, ?)AXp is free
in Φ, because at the level of A no agent is bound to a
strategy. Also if Φ = 〈〈x〉〉o(a, x)Ka〈〈y〉〉o

′
(a, y)AXp, then

Ka〈〈y〉〉o
′
(a, y)AXp is free in Φ, because at the level of A

the only agent bound to a strategy is a, and her strategy is
quantified upon after the knowledge operator.

We can now define the hierarchical fragment for which
we establish decidability of the model-checking problem.
Definition 6 (Hierarchical instances). An ESL-instance
(Φ,G) is hierarchical if all epistemic subformulas of Φ are
free in Φ and, for all subformulas of the formϕ1 = 〈〈x〉〉o1ϕ′1
and ϕ2 = 〈〈x〉〉o2ϕ′2 where ϕ2 is a subformula of ϕ′1, it holds
that O(o2) ⊆ O(o1).

In other words, an instance is hierarchical if innermost
strategy quantifiers observe at least as much as outermost
ones, and epistemic formulas do not talk about current
strategies. Here is the main contribution of this work:



Theorem 2. The model-checking problem for ESL re-
stricted to the class of hierarchical instances is decidable.

We prove this result by reducing it to the model-checking
problem for the hierarchical fragment of an extension of
QCTL∗ with imperfect information, knowledge and obser-
vation change, which we now introduce and study in order
to use it as an intermediate, “low-level” logic between tree
automata and ESL.

QCTL∗
ii with knowledge and observation

change
QCTL∗ extends CTL∗ with second order quantification on
atomic propositions (Emerson and Sistla 1984; Kupferman
1995; Kupferman et al. 2000; French 2001; Laroussinie
and Markey 2014). It was recently extended to model
imperfect-information aspects, resulting in the logic called
QCTL∗ii (Berthon et al. 2017). In this section we first de-
fine an epistemic extension of QCTL∗ii with operators for
knowledge and dynamic observation change, that we call
EQCTL∗ii. Then we define the syntactic class of hierarchical
formulas and prove that model checking this class of formu-
las is decidable.

Models
The models of EQCTL∗ii, as those of QCTL∗ii, are structures
in which states are tuples of local states. Fix n ∈ N.

Local states. Let {Li}i∈[n] denote n disjoint finite sets of
local states. For I ⊆ [n], we let LI :=

∏
i∈I Li if I 6= ∅,

and L∅ := {0} where 0 is a special symbol.

Concrete observations. A set o ⊆ [n] is a concrete obser-
vation (to distinguish from observation symbols o of ESL).

Fix o ⊆ [n] and I ⊆ [n]. Two tuples x, x′ ∈ LI are o-
indistinguishable, written x ∼o x

′, if for each i ∈ I ∩ o,
xi = x′i. Two words u = u0 . . . ui and u′ = u′0 . . . u

′
j over

alphabet LI are o-indistinguishable, written u ≈o u
′, if i =

j and for all k ∈ {0, . . . , i} we have uk ∼o u
′
k.

Compound Kripke structures. These are like Kripke struc-
tures except that the states are elements of L[n]. A com-
pound Kripke structure, or CKS, over AP, is a tuple S =
(S,R, `, sι, oι) where S ⊆ L[n] is a set of states,R ⊆ S×S
is a left-total1 transition relation, ` : S → 2AP is a labelling
function, sι ∈ S is an initial state, and oι = (oιa)a∈Ag is an
initial concrete observation for each agent.

A path in S is an infinite sequence of states π = s0s1 . . .
such that for all i ∈ N, (si, si+1) ∈ R, and a finite path
ρ = s0s1 . . . sn is a finite prefix of a path. For s ∈ S, we let
Pathsω(s) be the set of all paths that start in s, and Paths∗(s)
is the set of finite paths that start in s.

Syntax of EQCTL∗
ii

The syntax of EQCTL∗ii extends that of QCTL∗ii with epis-
temic operators Ka and observation-change operators ∆o

a,
which were recently introduced and studied in (Barrière et
al. 2018) in an epistemic temporal logic without second-
order quantification.

1i.e., for all s ∈ S, there exists s′ such that (s, s′) ∈ R.

Definition 7 (EQCTL∗ii Syntax). The syntax of EQCTL∗ii is
defined by the following grammar:

ϕ := p | ¬ϕ | ϕ ∨ ϕ | Aψ | ∃op. ϕ | Kaϕ | ∆o
aϕ

ψ := ϕ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ

where p ∈ AP, a ∈ Ag and o ⊆ [n].

Formulas of type ϕ are called state formulas, those of
type ψ are called path formulas, and EQCTL∗ii consists
of all the state formulas. A is the classic path quantifier
from branching-time temporal logics. ∃o is the second-order
quantifier with imperfect information from QCTL∗ii (Berthon
et al. 2017). ∃op. ϕ holds in a tree if there is way to choose
a labelling for p such that ϕ holds, with the constraint that
o-equivalent nodes of the tree must be labelled identically.
Kaϕmeans “agent a knows that ϕ holds”, where the knowl-
edge depends on the sequence of observations agent a has
had; finally, ∆o

aϕmeans that after agent a switches to obser-
vation o, ϕ holds.

Given an EQCTL∗ii formula ϕ, we define the set of quan-
tified propositions AP∃(ϕ) ⊆ AP as the set of atomic propo-
sitions p such that ϕ has a subformula of the form ∃op. ϕ.
We also define the set of free propositions APf (ϕ) ⊆ AP as
the set of atomic propositions p that appear out of the scope
of any quantifier of the form ∃op.

Semantics of EQCTL∗
ii

Before defining the semantics of the logic we first recall
some definitions for trees.

Trees. Let X be a finite set (typically a set of states). An
X-tree τ is a nonempty set of words τ ⊆ X+ such that:

• there exists xι ∈ X , called the root of τ , such that each
u ∈ τ starts with xι (i.e., xι 4 u);

• if u · x ∈ τ and u 6= ε, then u ∈ τ , and

• if u ∈ τ then there exists x ∈ X such that u · x ∈ τ .

The elements of a tree τ are called nodes. If u · x ∈ τ ,
we say that u · x is a child of u. A path in τ is an infinite
sequence of nodes λ = u0u1 . . . such that for all i ∈ N,
ui+1 is a child of ui, and Pathsω(u) is the set of paths that
start in node u. An AP-labelled X-tree, or (AP, X)-tree for
short, is a pair t = (τ, `), where τ is an X-tree called the
domain of t and ` : τ → 2AP is a labelling. For a labelled
tree t = (τ, `) and an atomic proposition p ∈ AP, we define
the p-projection of t as the labelled tree t ⇓p := (τ, ` ⇓p),
where for each u ∈ τ , `⇓p (u) := `(u) \ {p}. Two labelled
trees t = (τ, `) and t′ = (τ ′, `′) are equivalent modulo p,
written t ≡p t′, if t⇓p= t′⇓p (in particular, τ = τ ′).

Quantification and uniformity. In EQCTL∗ii, as in QCTL∗ii,
∃op. ϕ holds in a tree t if there is some o-uniform p-labelling
of t such that twith this p-labelling satisfies ϕ. A p-labelling
of a tree is o-uniform if every two nodes that are indistin-
guishable for observation o agree on their p-labelling.

Definition 8 (o-uniformity). A labelled tree t = (τ, `) is o-
uniform in p if for every pair of nodes u, u′ ∈ τ such that
u ≈o u

′, we have p ∈ `(u) iff p ∈ `(u′).



Changing observations. To capture how the observation-
change operator affects the semantics of the knowledge op-
erator, we use again observation records r and the asso-
ciated notion of observation sequence osa(r, n). They are
defined as for ESL except that observation symbols o are
replaced with concrete observations o. For u = u0 . . . ui
and u′ = u′0 . . . u

′
j over alphabet LI , and an observation

record r, we say that u and u′ are observationally equiva-
lent to agent a, written u ≈r

a u′, if i = j and, for every
k ∈ {0, . . . , i} and every o ∈ osa(r, k), uk ∼o u

′
k.

Finally, we inductively define the satisfaction relation |=.
Let t = (τ, `) be a 2AP-labelled LI -tree, u a node and r an
observation record that stops at u:

t, r, u |= p if p ∈ `(u)
t, r, u |= ¬ϕ if t, r, u 6|= ϕ
t, r, u |= ϕ ∨ ϕ′ if t, r, u |= ϕ or t, r, u |= ϕ′

t, r, u |= Eψ if ∃λ ∈ Pathsω(u) s.t. t, r, λ |= ψ
t, r, u |= ∃op. ϕ if ∃ t′ ≡p t s.t. t′ is o-uniform in p

and t′, r, u |= ϕ
t, r, u |= Kaϕ if ∀u′ ∈ t s.t. u ≈r

a u
′,

t, r, u′ |= ϕ

And if λ is a path in τ and r stops at λ0:

t, r, λ |= ϕ if t, r, λ0 |= ϕ
t, r, λ |= ¬ψ if t, r, λ 6|= ψ
t, r, λ |= ψ ∨ ψ′ if t, r, λ |= ψ or t, r, λ |= ψ′

t, r, λ |= Xψ if t, r, λ≥1 |= ψ
t, r, λ |= ψUψ′ if ∃ i ≥ 0 s.t. t, r, λ≥i |= ψ′ and

∀j s.t. 0 ≤ j < i, t, r, λ≥j |= ψ

We let t, r |= ϕ denote t, r, xι |= ϕ, where xι is t’s root.

Tree unfoldings tS . Let S = (S,R, `, sι, oι) be a com-
pound Kripke structure over AP. The tree-unfolding of S
is the (AP, S)-tree tS := (τ, `′), where τ is the set of all
finite paths that start in sι, and for every u ∈ τ , `′(u) :=
`(last(u)). Given a CKS S and an EQCTL∗ii formula ϕ, we
write S |= ϕ if tS , rι |= ϕ, where rι = (0, oιa)a∈Ag.

Model-checking problem for EQCTL∗ii. The model-
checking problem for EQCTL∗ii is the following: given an
instance (S, ϕ) where S is a CKS and ϕ is an EQCTL∗ii for-
mula, return ‘Yes’ if S |= ϕ and ‘No’ otherwise.

Clearly, EQCTL∗ii subsumes QCTL∗ii. Since the latter has
an undecidable model-checking problem (Berthon et al.
2017), the following is immediate:

Theorem 3. Model checking EQCTL∗ii is undecidable.

We now present the syntactic fragment for which we
prove that model checking is decidable. First we adapt the
notion of free epistemic formula to the context of EQCTL∗ii.
Intuitively, an epistemic subformula ϕ of a formula Φ is free
if it does not contain a free occurrence of a proposition quan-
tified in Φ. To see the connection with the corresponding
notion for ESL, consider that quantification on propositions
will be used to capture quantification on strategies.

Definition 9. Let Φ ∈ EQCTL∗ii, and recall that we assume
AP∃(Φ)∩APf (Φ) = ∅. An epistemic subformula ϕ = Kaϕ

′

of Φ is free in Φ if AP∃(Φ) ∩ APf (ϕ) = ∅.

For instance, if Φ = ∃op. (Kap) ∧Kaq, then subformula
Kaq is free in Φ, but subformula Kap is not because p is
quantified in Φ and appears free in Kap.

Definition 10 (Hierarchical formulas). An EQCTL∗ii for-
mula Φ is hierarchical if all its epistemic subformulas are
free in Φ, and for all subformulas ϕ1, ϕ2 of the form ϕ1 =
∃o1p1. ϕ

′
1 and ϕ2 = ∃o2p2. ϕ

′
2 where ϕ2 is a subformula of

ϕ′1, we have o1 ⊆ o2.

In other words, a formula is hierarchical if epistemic
subformulas are free, and innermost propositional quanti-
fiers observe at least as much as outermost ones. Note that
this is very close to hierarchical formulas of ESL. We let
EQCTL∗ii,⊆ be the set of hierarchical EQCTL∗ii formulas.

Theorem 4. The model-checking problem for EQCTL∗ii,⊆ is
non-elementary decidable.

Proof sketch. We build upon the tree automata construction
for QCTL∗ii presented in (Berthon et al. 2017), which we
extend to take into account knowledge operators and obser-
vation change. To do so we resort to the k-trees machinery
developed in (van der Meyden 1998; van der Meyden and
Shilov 1999), and extended in (Barrière et al. 2018) to the
case of dynamic observation change. One also needs to ob-
serve that free epistemic subformulas can be evaluated in-
differently in any node of the input tree.

Model-checking hierarchical ESL
In this section we prove that model checking hierarchical
instances of ESL is decidable (Theorem 2), by reduction to
the model-checking problem for QCTL∗i,⊆.

Let (Φ,G) be a hierarchical instance of the ESL model-
checking problem. The construction of the CKS is the same
as in (Berthon et al. 2017), except that in addition we have
to deal with initial observations.

Constructing the CKS SG . Let G = (Ac, V, E, `,O, vι,oι)
and Obs = {o1, . . . , on}. For i ∈ [n], define the local states
Li := {[v]oi | v ∈ V } where [v]o is the equivalence class
of v for relation ∼o. We also let Ln+1 := V . Finally, let
APv := {pv | v ∈ V } be a set of fresh atomic propositions,
disjoint from AP.

Define the CKS SG := (S,R, `′, sι, oι) where

• S := {sv | v ∈ V },
where sv := ([v]o1 , . . . , [v]on , v) ∈

∏
i∈[n+1] Li.

• R := {(sv, sv′) | ∃c ∈ AcAg s.t. E(v, c) = v′} ⊆ S2,

• `′(sv) := `(v) ∪ {pv} ⊆ AP ∪ APv ,

• sι := svι ,

• oι is such that oιa = {i} if oιa = oi.

For every ρ = v0 . . . vk, we let uρ := sv0 . . . svk . The
mapping ρ 7→ uρ is a bijection between finite plays in G
and nodes in tSG . For i ∈ [n] we let oi = {i}, and for an
observation record r in G we let r′ be the observation record
in SG where each oi is replaced with oi.

Constructing the EQCTL∗ii,⊆ formulas (ϕ) f . Suppose that
Ac = {c1, . . . , cl}; let APc := {pxc | c ∈ Ac and x ∈ Var}



be a set of propositions disjoint from AP ∪ APv . For every
partial function f : Ag ⇀ Var we define (ϕ) f by induction
on ϕ. All cases for boolean, temporal and knowledge opera-
tors are obtained by simply distributing over the operators of
the logic; for instance, (p) f = p and (Kaϕ) f = Ka(ϕ) f .
We now describe the translation for the remaining cases.

(〈〈x〉〉oϕ) f := ∃õpxc1 . . . ∃
õpxcl . ϕstr(x) ∧ (ϕ) f

where õi = {j | O(oi) ⊆ O(oj)}, and

ϕstr(x) = AG
∨
c∈Ac

(pxc ∧
∧
c′ 6=c

¬pxc′).

Note that oi = {i} ⊆ õi. The definition of õi is tailored to
obtain a hierarchical EQCTL∗ii formula. It is correct because
for each additional component in õi (i.e., each j 6= i), we
have O(oi) ⊆ O(oj), meaning that each such component
j brings less information than component i. A strategy thus
has no more information with õi than it would with oi.

For the binding operator, agent a’s observation becomes
the one associated with strategy variable x (see Remark 1):

((a, x)ϕ) f := ∆oi
a (ϕ) f [a7→x] if ox = oi.

For the outcome quantifier, we let

(Aψ) f := A(ψout(f)→ (ψ) f ), where

ψout(f) = G
∧
v∈V

(
pv →

∨
c∈AcAg

(
∧

a∈dom(f)

pf(a)ca ∧XpE(v,c))
)

The formula ψout(f) selects paths in which agents who
are assigned to a strategy follow it.

Proposition 5. Suppose that free(ϕ) ∩ Ag ⊆ dom(f), that
for all a ∈ dom(f), f(a) = x iff χ(a) = χ(x), and that r
stops at ρ. Then

G, χ, r, ρ |= ϕ if and only if tSG , r
′, uρ |= (ϕ) f .

Applying this to sentence Φ, any assignment χ, f = ∅,
ρ = vι and initial observation records, we get that

G |= Φ if and only if tSG |= (Φ) ∅.

Preserving hierarchy. To complete the proof of Theorem 2
we show that (Φ) ∅ is a hierarchical EQCTL∗ii formula.

First, observe that ifKaϕ is a free epistemic formula in Φ,
then its translation is also a free epistemic formula in (Φ) ∅.
Indeed, the only atomic propositions that are quantified in
(Φ) ∅ are of the form pxc . They code for strategies, and ap-
pear only in translations of strategy quantifiers, where they
are quantified upon, and outcome quantifiers. Thus they can
only appear free in the translation of an epistemic formula
Kaϕ if ϕ contains an outcome quantifier where some agent
uses a strategy that is not quantified within ϕ. Concerning
the hierarchy on observations of quantifiers, simply observe
that Φ is hierarchical in G, and for every two observations oi
and oj in Obs such that O(oi) ⊆ O(oj), by definition of õk
we have that õi ⊆ õj .

Applications
ESL being very expressive, many strategic problems with
epistemic temporal specifications can be cast as model-
checking problems for ESL. Our main result thus provides
a decision procedure for such problems on systems with hi-
erarchical information. We present two such applications.

Distributed synthesis
We consider the problem of distributed synthesis from epis-
temic temporal specifications studied in (van der Meyden
and Vardi 1998; van der Meyden and Wilke 2005) and we
give a precise definition to its variant with uninformed se-
mantics of knowledge, discussed in (Puchala 2010).

Assume that Ag = {a1, . . . , an, e}, where e is a spe-
cial player called the environment. Assume also that to each
player ai is assigned an observation symbol oi. The above-
mentioned works consider specifications from linear-time
epistemic temporal logic LTLK, which extends LTL with
knowledge operators. The semantics of knowledge opera-
tors contains an implicit universal quantification on contin-
uations of indistinguishable finite plays. In (van der Meyden
and Vardi 1998; van der Meyden and Wilke 2005), which
considers the informed semantics of knowledge, i.e., where
all players know each other’s strategy, this quantification
is restricted to continuations that follow these strategies;
in (Puchala 2010), which considers the uninformed seman-
tics, it quantifies over all possible continuations in the game.

We now prove a stronger result than the one announced
in (Puchala 2010), by allowing the use of either existential
or universal quantification on possible continuations after a
knowledge operator. For an ESL path formula ψ, we define

Φsyn(ψ) := 〈〈x1〉〉o1 . . . 〈〈xn〉〉on(a1, x1) . . . (an, xn)Aψ.

Note that the outcome quantifier A quantifies on all pos-
sible behaviours of the environment.
Definition 11. The epistemic distributed synthesis problem
with uninformed semantics is the following: given a CGSii G
and an ESL path formula ψ, decide whether G |= Φsyn(ψ).

Let LTLK (CTL∗K) the set of path formulas obtained
by allowing in LTL subformulas of the form Kaϕ, with
ϕ ∈ CTL∗K. The path quantifier from CTL∗K quantifies
on all possible futures, and is simulated in ESL by an un-
binding for all players followed by an outcome quantifier.
Therefore with specifications ψ in LTLK (CTL∗K), all epis-
temic subformulas are free. It follows that if the system G is
hierarchical, and we assume without loss of generality that
O(oi) ⊇ O(oi+1), then (G,Φsyn(ψ)) is a hierarchical in-
stance of ESL.
Theorem 6. The epistemic distributed synthesis problem
from specifications in LTLK (CTL∗K) with uninformed se-
mantics is decidable on hierarchical systems.

In fact we can deal with even richer specifications: as long
as hierarchy is not broken and epistemic subformulas remain
free, it is possible to re-quantify on agents’ strategies inside
an epistemic formula. Take for instance formula

ψ = FKan(a1, ?) . . . (an, ?)〈〈x〉〉on(an, x)AGKanp



It says that eventually, agent an knows that she can change
strategy so that in all outcomes of this strategy, she will al-
ways know that p holds. If G is hierarchical, then Φsyn(ψ)
forms a hierarchical instance with G. Consider now formula

ψ = FKai(a1, ?) . . . (an, ?)[[x]]o(aj , x)EG¬Kajp

which means that eventually agent ai knows that for any
strategy with observation o that agent aj may take, there is
an outcome in which aj never knows that p holds. If o is
finer than on (and thus all other oi), for instance if o rep-
resents perfect information, then hierarchy is preserved and
we can solve distributed synthesis for this specification. In
addition, the semantics of our knowledge operator takes into
account the fact that agent aj changes observation power.

Rational synthesis
Consider Ag = {a1, . . . , an}, each player ai having obser-
vation symbol oi. Given a global objective ψg and individual
objectives ψi for each player ai, define

Φrat := 〈〈x1〉〉o1 . . . 〈〈xn〉〉on(a1, x1) . . . (an, xn)Aψg

∧
∧

i∈{1,...,n}

(
[[xi]]

oi ((ai, xi)Aψi)→ Aψi

)
.

It is easy to see that Φrat expresses the existence of a solu-
tion to the cooperative rational synthesis problem (Kupfer-
man, Perelli, and Vardi 2016; Condurache et al. 2016).
However this formula does not form hierarchical instances,
even with hierarchical systems. But the same argument used
in (Berthon et al. 2017) for Nash equilibria shows that Φrat
is equivalent to Φ′rat, obtained from Φrat by replacing each
[[xi]]

oi with [[xi]]
op , where op represents perfect observation.

Theorem 7. Rational synthesis from LTL (CTL∗K) specifi-
cations is decidable on hierarchical systems.

As in the case of distributed synthesis discussed before,
we can in fact handle more complex specifications, nesting
knowledge and strategy quantification.

Discussion
In the uninformed semantics, players ignore each other’s
strategy, but they also ignore their own one, in the sense
that they consider possible finite plays in which they act
differently from what their strategy prescribes. This is the
usual semantics in epistemic strategic logics (van der Hoek
and Wooldridge 2003; Jamroga and van der Hoek 2004;
Belardinelli 2015; Dima, Enea, and Guelev 2010; Belar-
dinelli et al. 2017a; 2017b), and in some situations it may be
what one wants to model. For instance, an agent may exe-
cute her strategy step by step without having access to what
her strategy would have prescribed in alternative plays. In
this case, it is not possible for the agent to know whether a
possible play follows her strategy or not, and thus the unin-
formed semantics of knowledge is the right one.

On the other hand it seems natural, especially formu-
lated in these terms, to assume that an agent knows her own
strategy. We describe how, in the case where agents do not
change strategies or observation along time, this semantics
can be retrieved within the uninformed semantics.

Assume that player a is assigned some observation sym-
bol oa. As pointed out in (Puchala 2010, p.16), in the set-
ting of synchronous perfect recall, letting a player know
her strategy is equivalent to letting her remember her own
actions. To see this, assume that finite plays also contain
each joint action between two positions, and let ∼′oa be
such that vιc1v1 . . . cnvn ∼′oa vιc1v1 . . . cnvn if for all
i ∈ {1, . . . , n}, ca = c′a and vi ∼oa v′i. Then, for a strategy
σ of player a and two finite plays ρ, ρ′ such that ρ ∼′oa ρ

′, it
holds that ρ is consistent with a playing σ iff ρ′ is consistent
with a playing σ. This is because for every i < n we have
ρ≤i ∼′oa ρ

′
≤i (perfect recall), the next action taken by player

a is the same after ρ′≤i and ρ′≤i (definition of ∼′oa ), and σ
being an oa-strategy it is defined similarly on both prefixes.

In our setting, moves are not part of finite plays. To sim-
ulate the relation ∼′oa in which agent a remembers her own
actions, one can put inside the positions of game structures
the information of the last joint move played, possibly du-
plicating some positions. One then refines each observation
oa to only consider two positions equivalent if they contain
the same move for player a. We then get a semantics where
each agent remembers her own actions which, if agents do
not change strategy or observation through time, is equiva-
lent to knowing her own strategy. Note that doing so, a sys-
tem can only be hierarchical if more informed players also
observe all actions of less informed ones.

In the general case, where players can change strategies
and observations, we do not know to what extent we can deal
with the variant of the uninformed semantics where players
know there own strategies. We leave this for future work.

Conclusion
In this paper we have discussed two possible semantics of
knowledge when combined with strategies, the informed
and uninformed one. Focusing on the latter, we introduced
ESL, a very expressive logic to reason about knowledge and
strategies in distributed systems which can handle sophisti-
cated epistemic variants of game-theoretic notions such as
Nash equilibria. In addition, it is the first logic of knowledge
and strategies that permits reasoning about agents whose
observation power may change. This is a very natural phe-
nomenon: one may think of a program that receives access
to previously hidden variables, or a robot that loses a sensor.

We solved the model-checking problem of our logic for
hierarchical instances. To do so, we introduced an extension
of QCTL∗ with epistemic operators and operators of obser-
vation change, and we developed an automata construction
based on tree automata and k-trees. This is the first decid-
ability result for a logic of strategies, knowledge and time
with perfect recall on systems with hierarchical information.
Besides, it is also the first result for epistemic strategic logics
that takes into account dynamic changes of observation.

Our result implies that distributed synthesis and rational
synthesis for epistemic temporal specifications and the un-
informed semantics of knowledge are decidable on hierar-
chical systems. Similar results for other solution concepts,
such as subgame-perfect equilibria or admissible strate-
gies (Brenguier et al. 2017), could be obtained similarly.
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