
The Complexity of Model Checking Knowledge
and Time
Laura Bozzelli
Università degli Studi di Napoli “Federico II”

Bastien Maubert
Università degli Studi di Napoli “Federico II”

Aniello Murano
Università degli Studi di Napoli “Federico II”

Abstract
We establish the precise complexity of the model checking problem for the main logics of knowledge
and time with perfect recall. While it was known to be Pspace-complete for extensions of LTL,
CTL and CTL∗ with knowledge in the case of memoryless agents, for agents with perfect recall the
problem was only known to be nonelementary, with a number of exponentials that increases with
the nesting of knowledge operators in the formula. The precise complexity of the problem when the
maximum nesting is fixed has been an open problem for twenty years. We close it by establishing
improved upper bounds for CTL∗ with knowledge, which also hold for the fragments CTL and LTL
with knowledge, and providing matching lower bounds for all three logics. Moreover, we do so for
the two main variants of perfect recall, namely synchronous and asynchronous perfect recall, thus
essentially closing the picture for the complexity of model checking logics of knowledge and time.

2012 ACM Subject Classification Theory of computation → Complexity theory and logic; Theory
of computation → Logic and verification; Theory of computation → Modal and temporal logics;
Computing methodologies → Reasoning about belief and knowledge

Keywords and phrases Model checking, epistemic temporal logic, complexity

1 Introduction

A central aspect of multi-agent systems is that agents only have partial knowledge about
the system [21]. Epistemic logics are a standard framework to reason about what agents
know about the world and each others’ knowledge. In order to talk about behaviours of
on-going multi-agent systems, epistemic logics have been combined with temporal logics
such as LTL [22], CTL and CTL∗ [8]. The resulting epistemic temporal logics can express
properties of the evolution of agents’ knowledge over time. These logics have been applied
to the modelling and analysis of, e.g., distributed protocols [19, 11], information flow and
cryptographic protocols [28, 12] and knowledge-based programs [29].

The satisfiability problem for this family of logics has been thoroughly studied in [14, 15],
which categorise epistemic temporal logics according to a number of criteria: (1) is the
system synchronous or asynchronous; (2) does it have a unique initial state known to all
agents; (3) do agents have bounded memory or perfect recall; (4) can agents learn; (5) is the
temporal part of the language linear or branching; (6) can the epistemic part of the language
talk about the knowledge of several agents; and (7) can it talk about common knowledge.
By considering all the possible combinations, the authors identify 96 logics and study their
satisfiability/validity problem. Sound and complete axiomatization for those of these logics
that admit one are also provided in [13].

While the picture is clear for satisfiability and axiomatization of these logics, it is not
entirely the case for the model-checking problem, which is arguably at least as important for
the verification of multi-agent systems as satisfiability or axiomatization (see for instance [6]).

2 The Complexity of Model Checking Knowledge and Time

LTL CTL CTL∗

bm, asyn, K/CK Pspace-c Ptime-c Pspace-c
bm, syn, K/CK Pspace-c Pspace-c Pspace-c
pr, syn/asyn, CK undecidable undecidable undecidable
pr, syn/asyn, K (k − 1)-Expspace-c (k − 1)-Expspace-c (k − 1)-Expspace-c

Table 1 Known and new results (in grey; for CTL, the upper bounds were known). “bm”
and “pr” stand for “bounded memory” and “perfect recall”, “syn” and “asyn” for “synchronous”
and “asynchronous”, and “CK” indicates extensions with both knowledge and common knowledge
operators, while “K” indicates the absence of common knowledge. Finally k ≥ 1 is the maximal
alternation depth of formulas.

For agents with bounded memory the situation is well understood. In particular, for the
asynchronous setting, adding knowledge operators and even common-knowledge operators to
LTL, CTL or CTL∗ does not increase the complexity of model checking: it is Pspace-complete
for extensions of LTL and CTL∗ [18] and Ptime-complete for extensions of CTL [24]. For the
synchronous setting, the situation is similar, but for extensions of CTL, the problem becomes
Pspace-complete [10, 17].

For agents with perfect recall, the problem is undecidable when common knowledge is
part of the language [27]. For the extensions of LTL, CTL and CTL∗ with knowledge but no
common knowledge operators, denoted respectively LTLK, CTLK and CTLK∗, model checking
is instead decidable but non-elementary [27, 1, 7, 2, 4]. It was noted that the non-elementary
blow-up depends on the alternation depth of formulas, the maximal number of alternations
between knowledge operators for different agents: each additional alternation forces to
maintain in the model-checking procedure an additional layer of information about what
agents know. For a fixed alternation depth k ≥ 1, in the synchronous setting model checking
is known to be in k-Expspace for LTLK [27]. For both the synchronous and asynchronous
semantics, it is known to be in (k − 1)-Expspace for CTLK [1], and in k-Exptime for
CTLK∗ [2, 4]. However it is not known whether these bounds are tight.

We show that they are tight only for CTLK: we prove that model-checking for LTLK,
CTLK and CTLK∗ is actually (k − 1)-Expspace-complete for alternation depth at most k,
both for synchronous and asynchronous semantics. The upper bounds for synchronous and
asynchronous CTLK∗ and LTLK are new, and the lower bounds are new for all six logics. We
summarise the main results in Table 1. We point out that our Pspace-completeness result
for the fragment of LTLK with alternation depth one generalises that for synchronous LTLK
with one agent proved in [10].

Note that the complexity of model checking is often studied for models that are given by
an explicit description of their states and transitions, which is what we consider in this work.
More recently some works started to study the complexity of model checking multi-agent
systems for succinct representations [20, 16].

2 Preliminaries

Let N be the set of natural numbers. For all n, k ∈ N, Tower(n, k) denotes a tower of
exponentials of height k and argument n: define Tower(n, 0) = n and Tower(n, k + 1) =
2Tower(n,k). Let k-Expspace be the class of languages decided by deterministic Turing
machines bounded in space by functions of n in O(Tower(nc, k)), for some constant c ≥ 1.

Let w be a finite or infinite word over some finite alphabet Σ. We denote by |w| the

L. Bozzelli, B. Maubert and A. Murano 3

length of w (we set |w| =∞ if w is infinite). For all 0 ≤ i, j < |w|, with i ≤ j, wi is the i-th
letter of w, w≤i is the prefix of w that ends at position i, w≥i is the suffix that starts at
position i, and w[i,j] = wi . . . wj . For words w and w′, we write w 4 w′ if w is a prefix of w′.

2.1 Epistemic Temporal Logics
We recall the logic CTLK∗ and its fragments LTLK and CTLK, which respectively correspond
to extensions of CTL∗, LTL and CTL with knowledge operators.

Let us fix a countably infinite set of atomic propositions AP and a finite set of agents Ag.
As for state and path formulas in CTL∗, we distinguish between history formulas and path
formulas. We say history formulas instead of state formulas because, considering agents with
perfect recall of the past, the truth of epistemic formulas depends not only on the current
state, but also on the history before reaching this state.

I Definition 1 (Syntax of CTLK∗). The sets of history formulas ϕ and path formulas ψ are
defined by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Eψ | Kaϕ

ψ ::= ϕ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ,

where p ∈ AP and a ∈ Ag.

Operators X and U are the standard next and until temporal operators of LTL, E is
the existential path quantifier of CTL∗, and Ka is the knowledge operator for agent a from
epistemic logics. Formula Kaϕ reads as “agent a knows that ϕ is true”. As usual we define
Aψ := ¬E¬ψ. The language of CTLK∗ consists of the history formulas. We let Sub(ϕ) be
the set of subformulas in ϕ, and we define the size of a formula ϕ as |ϕ| = |Sub(ϕ)|. We
call alternation depth of a formula ϕ, written ad(ϕ), the maximum number of alternations
between knowledge operators for different agents in the formula. For instance, ad(p) = 0,
ad(Kap) = 1, ad(Ka¬Kap) = 1 and ad(KbKaq ∨Kap) = 2.

Fragments of CTLK∗ We consider two usual syntactic fragments of CTLK∗, namely LTLK
and CTLK. LTLK consists of the formulas of the form Aψ or Eψ where every path operator
A in ψ is immediately preceded by a knowledge operator Ka. CTLK is obtained by requiring
that the temporal modalities X and U are immediately preceded by a path quantifier. For
every k ∈ N we define LTLKk, CTLKk and CTLK∗k the fragments of LTLK, CTLK and CTLK∗,
respectively, obtained by restricting to formulas of alternation depth at most k.

Semantics CTLK∗ formulas are interpreted over Kripke structures equipped with one
indistinguishability relation ∼a for each agent a.

I Definition 2. A Kripke structure (KS) is a structure M = (AP, S,R, V, {∼a}a∈Ag, s
ι),

where AP ⊂ AP is a finite subset of atomic propositions, S is a set of states, R ⊆ S × S
is a left-total1 transition relation, V : S → 2AP is a valuation function, ∼a ⊆ S × S is an
equivalence relation, for each a ∈ Ag, and sι ⊆ S is an initial state.

The size |M | of M is the number of states in M . A path is an infinite sequence of states
π = s0s1 . . . such that for all i ≥ 0, siRsi+1, and a history τ is a non-empty prefix of a path.
We denote by Hist(s) (resp. Path(s)) the set of histories (resp. paths) that start in s. Unless
specified otherwise, all histories and paths are assumed to start in the initial state sι. For

1 i.e., for every s ∈ S there exists s′ ∈ S such that sRs′

4 The Complexity of Model Checking Knowledge and Time

I ⊆ S, we write R(I) = {s′ | ∃s ∈ I s.t. sRs′} for the set of successors of states in I. Finally,
for a ∈ Ag and s ∈ S, we let [s]a be the equivalence class of s for relation ∼a.

We consider the classic synchronous and asynchronous perfect recall semantics of know-
ledge modalities, where agents remember all of the past. While in synchronous systems,
agents always observe when a transition takes place, in asynchronous ones agents cannot tell
that a transition occurred if their observation of the state remains unchanged.

I Definition 3. Two histories τ and τ ′ are indistinguishable for an agent a with synchronous
perfect recall (SPR for short), written τ ≈s

a τ
′, if they are point-wise indistinguishable to a,

i.e. |τ | = |τ ′| and τi ≈a τ ′i for each i < |τ |.

To define asynchronous perfect recall, we first define the sequence of observations that an
agent has along a history, in which sequences of successive identical observations collapse to a
single observation. Formally, for an agent a, we let Obsa(s) = [s]a, Obsa(τ ·s) = Obsa(τ) · [s]a
if [s]a 6= lst(Obsa(τ)), and Obsa(τ) otherwise.

I Definition 4. Two histories τ and τ ′ are indistinguishable for an agent a with asynchronous
perfect recall (APR for short), written τ ≈as

a τ ′, if Obsa(τ) = Obsa(τ ′).

I Definition 5 (Semantics). Fix a model M . A history formula ϕ is evaluated on a history
τ . A path formula ψ is interpreted on a path π and a point in time n ∈ N. The SPR (resp.,
APR) semantics is defined by induction as follows:

τ |= p if p ∈ V (lst(τ))
τ |= ¬ϕ if τ 6|= ϕ

τ |= ϕ1 ∨ ϕ2 if τ |= ϕ1 or τ |= ϕ2

τ |= Eψ if ∃π s.t. τ 4 π and π, |τ | − 1 |= ψ

τ |= Kaϕ if ∀τ ′ ∈ Hist(sι) such that τ ′ ≈s
a τ (resp., τ ′ ≈as

a τ), τ ′ |= ϕ

π, n |= ϕ if π≤n |= ϕ

π, n |= ¬ψ if π, n 6|= ψ

π, n |= ψ1 ∨ ψ2 if π, n |= ψ1 or π, n |= ψ2

π, n |= Xψ if π, (n+ 1) |= ψ

π, n |= ψ1Uψ2 if ∃m ≥ n s.t. π,m |= ψ2 and ∀k s.t. n ≤ k < m, π, k |= ψ1

A model M with initial state sι satisfies a CTLK∗ formula ϕ under the SPR (resp., APR)
semantics, written M |=sy ϕ (resp., M |=as ϕ), if sι |= ϕ under the SPR (resp., APR)
semantics.
I Remark 6. Observe that we assume the definition of the model to be common knowledge
among the agents, which is standard for instance in game theory. As a result the initial state
is common knowledge, which corresponds to the unique initial state assumption in [15, 13].
This is reflected in the semantics in the fact that we only consider indistinguishable histories
that start in the initial state. We note that one can simulate in this semantics the case where
the initial state is unknown by adding an artificial initial state sι0 such that (sι0, s) ∈ R
and (s, sι0) /∈ R for all states s in the original model, and labelling each state s with an
atom ps. Then evaluating s |= ϕ (with unknown initial state) is equivalent to evaluating
sι0 |= AX(ps → ϕ) (with unique initial state).

2.2 Main result
The model-checking problem for the SPR (resp., APR) semantics, of which we study the
complexity, is checking for a finite model M and a CTLK∗ formula ϕ, whether M |=sy ϕ

(resp., M |=as ϕ). In this work we prove the following result.

L. Bozzelli, B. Maubert and A. Murano 5

I Theorem 7. For every k ∈ N, the model-checking problem for LTLKk+1, CTLKk+1 and
CTLK∗k+1 is k-Expspace-complete, both for SPR and APR semantics.

3 Powerset construction

In this section we recall a classic powerset construction for algorithmic questions related to
imperfect information. It was first used by Reif in [25] to eliminate imperfect information
from two-player games, and in [26, 27, 1] to model check variants of LTLK and CTLK. We
show that it also can be used to model-check CTLK∗.

While the powerset construction in [26, 27, 1] makes use of k-trees, which encore enough
information to evaluate formulas of alternation depth k, we instead consider the simpler case
of alternation 1. We first show how to model check formulas of alternation depth one in
polynomial space by constructing 1-trees on the fly. We next obtain our upper bounds for
the general case by using the powerset construction to reduce the model-checking problem
for formulas of alternation depth k + 1 to that of alternation depth k, with an exponential
blowup in the model. The only difference between the synchronous and asynchronous case
will be in the definition of the 1-trees, which are essentially information sets.

3.1 Information sets and updates
Since we only need the degenerate case of 1-trees, which are a collection of information sets
together with the current state of the system, we only define information sets and not 1-trees.
The notion of information set is meant to capture the set of states that an agent considers
possible at a given moment, and the following definition is common to synchronous and
asynchronous perfect recall.

I Definition 8 (Information sets). Given a model M with state set S, an information set
I ⊆ S is a set of states. Given a history τ and an agent a, the information set of a at τ is
defined as

Ia(τ) = {s | ∃τ ′ ∈ Hist(sι) s.t. τ ≈a τ ′ and s = lst(τ ′)}.

We will write Isy
a when referring to the synchronous semantics, and Ias

a for the asynchron-
ous one, and we may omit the subscript when clear from the context.

We now define two different update functions, for the synchronous and asynchronous
cases. The role of these functions is to compute the new information set of an agent after a
transition, given her former information set and the new state. We start with the synchronous
case, which is easier and standard (see for instance [25, 5, 23], or [26, 27] for the more general
case of k-trees).

I Definition 9 (Synchronous update). The synchronous update of an information set Ia for
agent a with a new state s is

Upsy(Isy
a , s) = R(Isy

a) ∩ [s]a

This definition says that the set of states that agent a considers possible after taking
a transition that arrives in state s consists of all states that are successors of states she
previously considered possible, and that are compatible with what she observes of the new
state. The following fact is folklore and follows directly by applying the definitions:

I Lemma 10. For every history τ ′ = τ · s and agent a, Isy
a (τ ′) = Upsy(Isy

a (τ), s).

6 The Complexity of Model Checking Knowledge and Time

For asynchronous perfect recall, the update is slightly more involved, as the agent may
consider that arbitrarily many steps occurred that did not change his observation. We call
invisible step (for some agent a) a transition between two states s and s′ such that s ∼a s′,
and given a set of states S, we let Reachai (S) ⊇ S be the set of states reachable from S via
steps invisible for a. We can now define the update as follows:

I Definition 11 (Asynchronous update). The asynchronous update of an information set Ia
for agent a with a new state s is

Upas(Ias
a , s) =

{
Ias
a if Ias

a ⊆ [s]a,
Reachai (R(Ias

a) ∩ [s]a) otherwise.

This definition is an adaptation to our setting of the one in [23], which considers two-player
games. The case of k-trees for asynchronous perfect recall is considered in [26]. We have the
following result, corresponding to Lemma 10, and which also follows from the definitions:

I Lemma 12. For every history τ ′ = τ · s and agent a, Ias
a (τ ′) = Upas(Ias

a (τ), s).

3.2 Powerset construction
We now define the powerset construction which transforms a model M into another model
M̂ of exponential size in which epistemic formulas of alternation depth 1 can be evaluated
positionally. The idea is that states of M̂ contain, in addition to the current state, the
current information set of each agent (thus positions are 1-trees in the sense of [27]). This
construction can be instantiated either for the synchronous or asynchronous semantics by
choosing the appropriate update function for information sets. In the rest of this section we
will often omit to specify in the notations which case is considered, because the reasoning
will work for both semantics. The only difference is when we need the correctness of the
update functions: in one case we will refer to Lemma 10, and in the other to Lemma 12.

I Definition 13 (Powerset construction). Given M = (AP, S,R, V, {∼a}a∈Ag, s
ι), we define

M̂ = (AP, Ŝ, R̂, V̂ , {∼̂a}a∈Ag, ŝ
ι), where

Ŝ = S × (2S)Ag

(s, 〈Ia〉a∈Ag)R̂(s′, 〈I ′a〉a∈Ag) if sRs′ and for each a ∈ Ag, I ′a = Up(Ia, s′)
V̂ (s, 〈Ia〉a∈Ag) = V (s)
for each b ∈ Ag, (s, 〈Ia〉a∈Ag)∼̂b(s′, 〈I ′a〉a∈Ag) if s′ ∈ Ib and Ib = I ′b
ŝ ι = (sι, 〈{sι}〉a∈Ag)

Observe that because the update of information sets with a new state is deterministic,
every history τ in M defines a unique history τ̂ of length |τ | in M̂ , that starts in ŝ ι and
follows transitions determined by τ . Formally, τ̂ is defined by induction as follows: ŝι = ŝ ι,
and τ̂ · s = τ̂ · (s, 〈I ′a〉a∈Ag), where (s, 〈I ′a〉a∈Ag) is the unique successor of lst(τ̂) in M̂ whose
first component is s. Similarly we let π̂ be the infinite path induced by π in M̂ . The following
lemma follows directly by definition of M̂ , τ̂ and application of Lemma 10 or Lemma 12,
depending on the semantics considered:

I Lemma 14. For every history τ , it holds that lst(τ̂) = (lst(τ), 〈Ia(τ)〉a∈Ag).

Observe that |M̂ | ≤ |M |2|Ag||M | (it may be smaller because we can remove states that
are not reachable by the transition relation and the indistinguishability relations).

We now describe how formulas of alternation depth one can be evaluated positionally in
the powerset model M̂ .

L. Bozzelli, B. Maubert and A. Murano 7

I Definition 15 (Alternative semantics). Given a powerset model M̂ , a state ŝ ∈ Ŝ and a path
π̂, the alternative semantics of a formula of alternation depth at most 1 is defined inductively
as follows:

ŝ |=I p if p ∈ V̂ (ŝ)
ŝ |=I ¬ϕ if ŝ 6|=I ϕ

ŝ |=I ϕ1 ∨ ϕ2 if ŝ |=I ϕ1 or ŝ |=I ϕ2

ŝ |=I Aψ if for all π̂ ∈ Path(ŝ), π̂ |=I ψ

ŝ |=I Kaϕ if for all ŝ′ s.t. ŝ′ ∼̂a ŝ, ŝ′ |=I ϕ

π̂ |=I ϕ if π̂0 |=I ϕ

π̂ |=I ¬ψ if π̂ 6|=I ψ

π̂ |=I ψ1 ∨ ψ2 if π̂ |=I ψ1 or π̂ |=I ψ2

π̂ |=I Xψ if π̂≥1 |=I ψ

π̂ |=I ψ1Uψ2 if ∃i ≥ 0 such that π̂≥i |=I ψ2 and ∀j such that 0 ≤ j < i, π̂≥j |=I ψ1

Note that we cannot evaluate nested knowledge operators for different agents because
we have only one “level” of knowledge in the states of M̂ . However we can evaluate nested
knowledge operators for a same agent because indistinguishability relations between states
∼a, and thus also relations ≈a between histories, are equivalence relations: if h ≈a h′, then
agent a knows the same things in h and in h′. This is reflected in the definition of the
indistinguishability relations in M̂ .

The following proposition establishes that this alternative semantics is equivalent to the
original one for formulas of alternation depth at most one.

I Proposition 16. For every history formula ϕ and path formula ψ of alternation depth at
most one, each model M , history τ , path π and time n ∈ N,

τ |= ϕ iff lst(τ̂) |=I ϕ, and
π, n |= ψ iff π̂≥n |=I ψ.

Proof. The proof is by induction on formulas. We only treat the cases of atomic propositions,
path quantifier and knowledge operators, all remaining cases follow directly by definition of
the semantics and application of the induction hypothesis.

ϕ = p: By Lemma 14, τ̂ ends in state (lst(h), 〈Ia(τ)〉a∈Ag), so by definition of M̂ we have
V̂ (lst(τ̂)) = V (lst(τ)), and the result follows.

ϕ = Aψ: It is enough to observe that Path(lst(τ̂)) = {π̂≥|τ |−1 | τ 4 π}; the result then
follows by induction hypothesis.

ϕ = Kaϕ
′: Let us write lst(τ̂) = (s, 〈Ia〉a∈Ag), and recall that by Lemma 14,

Ia = Ia(τ) = {lst(τ ′) | τ ≈a τ ′}. (1)

For the first direction assume that lst(τ̂) |=I Kaϕ
′. Now let τ ′ ≈a τ , we show that τ ′ |= ϕ′,

and we are done. Since lst(τ̂) |=I Kaϕ
′ and, by (1), lst(τ ′) ∈ Ia, we have by definition

of M̂ and |=I that (lst(τ ′), 〈I ′a〉a∈Ag) |=I ϕ
′, where I ′a = Ia = Ia(τ) = Ia(τ ′). Now, since

Kaϕ
′ is of alternation depth one, ϕ′ does not contain any operator Kb for b 6= a. As a

result the semantics of ϕ′ does not depend on Ib for b 6= a, and it is also the case that
(lst(τ ′), 〈Ia(τ ′)〉a∈Ag) |=I ϕ

′. By induction hypothesis we conclude that τ ′ |= ϕ′.
For the other direction assume that τ |= Kaϕ

′. To show that lst(τ̂) |=I Kaϕ
′, we

take some ŝ′ ∼̂alst(τ̂) and show that ŝ′ |=I ϕ
′. By definition of M̂ , ŝ′ is of the form

8 The Complexity of Model Checking Knowledge and Time

ŝ′ = (s′, 〈I ′a〉a∈Ag) with s′ ∈ Ia(τ) and I ′a = Ia(τ). Let τ ′ be such that τ ′ ≈a τ and
lst(τ ′) = s′. Since τ |= Kaϕ

′, we have τ ′ |= ϕ′, and by induction hypothesis lst(τ̂ ′) |=I ϕ
′.

Now, by Lemma 14, lst(τ̂ ′) = (s′, 〈Ia(τ ′)〉a∈Ag), and since τ ≈a τ ′ we have Ia(τ) = Ia(τ ′).
Again, because Kaϕ

′ has alternation depth one, ϕ′ contains no Kb for b 6= a, and thus
ŝ′ |=I ϕ

′.
�

4 Upper bounds

In this section we establish the upper bounds in Theorem 7. We start with the base case,
showing that we can model check formulas of alternation depth at most one in polynomial
space. We then use a marking algorithm on the powerset construction to show that model-
checking formulas of alternation depth k+1 reduces to model-checking formulas of alternation
depth k on an exponentially larger model. All the reasoning in this section is independent of
the chosen semantics, synchronous or asynchronous perfect recall.

4.1 Alternation depth one
In the main model-checking procedure, formulas of the form Eψ are dealt with by guessing a
path in the powerset model, that is built on the fly, and evaluating ψ on it in polynomial
space. However for our algorithm to terminate, we need to bound the length of paths that
need to be searched, and we need this bound to be at most exponential so that we can count
up to it in polynomial space. We now prove that it is indeed the case.

An infinite word w is ultimately periodic if there exist i, j ∈ N such that w = w≤i−1w
∗
[i,j].

Letting i and j be the smallest such values, we call i the start index of π, and j − i+ 1 is
called its period.

I Lemma 17. Let ψ be a CTLK∗ path formula of alternation depth at most 1, let M be a
model, M̂ the powerset model, and ŝ a state in M̂ . If ŝ |= Eψ, then there exists a path π̂
starting in ŝ such that π̂ |=I ψ and π̂ is ultimately periodic with start index and period less
than |M |2|Ag||M |+|ψ|.

Proof. As in the proof of Proposition 19, we can evaluate maximal history subformulas of ψ
in states of M̂ , marking it with fresh atoms APf and replacing maximal history subformulas
in ψ with these atoms. We thus get a marked powerset model M̂ ′ and a formula ψ′ of
alternation depth 0 such that π̂ |=I ψ iff π̂′ |=I ψ

′.
Since ψ′ is an LTL formula, one can build a nondeterministic Büchi word automaton Aψ′

of size at most 2|ψ′| that accepts precisely the infinite words on 2AP∪APf that satisfy ψ′ [30].
By taking the product of Aψ with M̂ ′, we obtain an automaton A

M̂ ′,ψ′ over the states of
M̂ ′ that has size at most |M |2|Ag||M |+|ψ′| and accepts precisely paths in M̂ ′ that satisfy ψ′.
By definition of the Büchi acceptance condition, there exists such a path if and only if there
is an ultimately periodic path in the transition graph of A

M̂ ′,ψ′ with an accepting state in
the periodic part. So if there is such a path π̂′, there is an ultimately periodic one of start
index and period less than the size of A

M̂ ′,ψ′ , i.e. |M |2|Ag||M |+|ψ|. Finally, observe that this
path π̂′ such that π̂′ |=I ψ

′ defines an ultimately periodic path π̂ in the unmarked powerset
model M̂ , with same start index and period, such that π̂ |=I ψ. �

We now adapt Emerson and Lei’s algorithm, which shows how to turn a polynomial-space
model-checking procedure for LTL into one for CTL∗ that also runs in polynomial space [9].
The interesting case is for formulas of the form Eψ. The proof of Lemma 17 provides a

L. Bozzelli, B. Maubert and A. Murano 9

model-checking procedure for such formulas, but building the full automaton Aψ and powerset
model M̂ takes exponential space. We tackle this by building them both on the fly. The
marking procedure of maximal history subformulas in states of M̂ is replaced with recursive
calls to the model-checking procedure for CTLK∗1, and by Lemma 17 we can implement in
polynomial space a counter that indicates when the nondeterministic search of a satisfying
path can be stopped.

I Proposition 18. Model checking CTLK∗k formulas of alternation depth one is in Pspace.

Proof. We define algorithm MC1(ϕ,M, s, 〈Ia〉a∈Ag) that takes as input a CTLK∗ history
formula ϕ of alternation depth at most one, a model M , a state s and an information set Ia
for each agent a, and returns true if M, τ |= ϕ for all histories τ such that lst(τ) = s and
Ia(τ) = Ia for all a ∈ Ag, and false otherwise. The algorithm is defined by induction on ϕ:

ϕ = p: return p ∈ V (s)
ϕ = ϕ1 ∨ ϕ2: return MC1(ϕ1,M, s, 〈Ia〉a∈Ag) or MC1(ϕ2,M, s, 〈Ia〉a∈Ag)
ϕ = ¬ϕ′: return not MC1(ϕ,M, s, 〈Ia〉a∈Ag)
ϕ = Kbϕ

′: return Ands′∈Ib
MC1(ϕ′,M, s′, 〈I ′a〉a∈Ag), where I ′b = Ib and I ′a = ∅ for a 6= b.

ϕ = Eψ: Let MaxSub(ψ) be the set of maximal history subformulas of ψ, let ψ′ be the
LTL formula obtained from ψ by considering subformulas in MaxSub(ψ) as atoms, and
let Cl(ψ) be the closure of Sub(ψ′) under negation. First, guess a subset S1 ⊆ Cl(ψ) of
formulas that currently hold, in state s with information sets 〈Ia〉a∈Ag. Check boolean
consistency, i.e., check that the following two conditions hold:

ϕ1 ∨ ϕ2 ∈ S1 iff ϕ1 ∈ S1 or ϕ2 ∈ S1

¬ϕ′ ∈ S1 iff ϕ′ /∈ S1

Check that ψ ∈ S1. Also, check that the truth of maximal history subformulas was
guessed correctly: for all ϕ′ ∈ MaxSub(ψ) ∩ S1, check that MC1(ϕ′,M, s, 〈Ia〉a∈Ag), and
for all ϕ′ ∈ MaxSub(ψ) \ S1, check that MC1(¬ϕ′,M, s, 〈Ia〉a∈Ag).
Now by Lemma 17 we know that if there exists a path that satisfies ψ, there exists an
ultimately periodic one with start index and period less than |M |2|Ag||M |+|ψ|. So let us
guess n1, n2 ≤ |M |2|Ag||M |+|ψ|, representing respectively the start index and the period of
the ultimately periodic path that the algorithm is going to guess. Set a counter c to zero.
While c < n1, do:

Step

guess s′ ∈ R(s)
s := s′, Ia := Upsy(Ia, s′)
guess a set S2 ⊆ Cl(ψ)
check boolean consistency of S2

check dynamic consistency of S1 and S2:
Xϕ′ ∈ S1 iff ϕ′ ∈ S2, and
ϕ1Uϕ2 ∈ S1 iff ϕ2 ∈ S1, or (ϕ1 ∈ S1 and ϕ1Uϕ2 ∈ S2)

inductively check the truth of maximal history subformulas in S2

S1 := S2, c := c + 1
Once c = n1, let Speriod := S1, speriod := s, Iaperiod := Ia for each a ∈ Ag, and c := 0.
While c < n2, do:

Mark which eventualities (formulas of the form ϕ1Uϕ2) in Speriod are satisfied
Execute Step

10 The Complexity of Model Checking Knowledge and Time

Once c = n2, check that s = speriod and Ia = Iaperiod for all a. If it is the case we indeed
guessed an ultimately periodic path in the powerset model, and we just need to check
that all eventualities in Speriod have been satisfied somewhere in the period. Return true
if it is the case, false otherwise.

Since the algorithm simply follows the alternative semantics, its correctness follows from
Proposition 16, together with Lemma 17 for the bound on the length of paths. �

4.2 Reducing alternation
We now describe how we can use the powerset construction to eliminate one level of alternation
of knowledge operators. This is done with a classic procedure that we recall for completeness.

I Proposition 19. Given a CTLK∗ formula Φ of alternation depth k + 1 and a model |=,
one can build a model M ′ of size at most |M |2|Ag||M | and a CTLK∗ formula Φ′ of alternation
depth k and size |Φ′| ≤ |Φ| such that M |= Φ iff M ′ |= Φ′.

The construction ofM ′ is as follows. First, build the powerset model M̂ as in Definition 15.
In this model, history formulas of alternation depth one can be evaluated positionally, as
stated in Proposition 16. Let Sub1(Φ) be the set of maximal such formulas in Sub(Φ). For
each formula ϕ in Sub1(Φ) and each state ŝ of M̂ , evaluate whether ŝ |=I ϕ (since |=I is the
memoryless semantics of CTLK∗, this can be done in Pspace [18]), and mark state ŝ with
the fresh atomic proposition pϕ if ŝ |=I ϕ. We abuse notation and still call M̂ the model
obtained after this marking procedure (and similarly, ŝ, τ̂ and π̂ refer to states, histories and
paths in the marked model). Also, for every subformula ϕ of Φ, define ϕ̂ by replacing each
ϕ′ in Sub1(ϕ) with atom pϕ′ (note that if ϕ contains no knowledge operator then ϕ̂ = ϕ).

Unlike in Proposition 16, where we use the alternative memoryless semantics to evaluate
positionally formulas of alternation depth one, this time we interpret ϕ̂ on M̂ with the
perfect-recall semantics. One can prove the following lemma:

I Lemma 20. For every history subformula ϕ and path subformula ψ of Φ, every history τ
and path π in M ,

τ |= ϕ iff τ̂ |= ϕ̂

π, n |= ψ iff π̂, n |= ψ̂

Proof. The proof is by induction on formulas. Again we only treat the cases of atomic
propositions, path quantifier and knowledge operators, all remaining cases follow directly by
definition of the semantics and application of the induction hypothesis.

ϕ = p: By Lemma 14, τ̂ ends in state (lst(h), 〈Ia(τ)〉a∈Ag), so by definition of M̂ we have
V̂ (lst(τ̂)) = V (lst(τ)), and we conclude by noting that p̂ = p.

ϕ = Aψ: We observe that the set {π | τ 4 π} is in bijection with the set {π̂ | τ̂ 4 π̂}; the
result then follows by induction hypothesis and the fact that Âψ = Aψ̂.

ϕ = Kaϕ
′: Let us write lst(τ̂) = (s, 〈Ia〉a∈Ag). We consider two cases.

If ad(Kaϕ
′) = 1, then ϕ̂ = pϕ. Thus τ̂ |= pϕ iff lst(τ̂) has been marked with pϕ, which

by construction is done iff lst(τ̂) |=I ϕ, which by Proposition 16 is equivalent to τ |= ϕ,
and we are done.
If ad(Kaϕ

′) > 1, then ϕ̂ = Kaϕ̂′. In this case τ |= Kaϕ
′ iff

for all τ ′ ≈a τ, τ ′ |= ϕ′, (2)

L. Bozzelli, B. Maubert and A. Murano 11

which by induction hypothesis is equivalent to

for all τ ′ ≈a τ, τ̂ ′ |= ϕ̂′. (3)

Because all histories start in the initial state, there is a bijection between {τ ′ | τ ′ ≈a τ}
and {τ̂ ′ | τ̂ ′ ≈a τ̂}. Thus (3) can be rewritten as

for all τ̂ ′ ≈a τ̂ , τ̂ ′ |= ϕ̂′, (4)

which is equivalent to τ̂ |= Kaϕ̂′, and we are done.
�

Using Proposition 19 for the inductive case and Proposition 18 for the base case, we
easily prove the following by induction on k.

I Theorem 21. Model checking CTLK∗ formulas of alternation depth at most k + 1 is in
k-Expspace, both for synchronous and asynchronous perfect recall.

5 Lower bounds

In this section, we establish the following result which provides lower bounds for model
checking against CTLK∗, matching the upper bounds of Theorem 21.

I Theorem 22. For k ∈ N, model checking of CTLK∗k+1 for both the SPR and APR semantics
is k-Expspace-hard even if the formula is assumed to be a fixed LTLKk+1

⋂
CTLKk+1 formula

and the number of agents is 2.

Theorem 22 is proved by a polynomial-time reduction from a suitable domino-tiling
problem [3]. An instance I of such a problem is a tuple I = (C,∆, n, din, dacc), where C
is a finite set of colours, ∆ ⊆ C4 is a set of tuples (cdown, cleft, cup, cright) of four colours,
called domino-types, n > 0 is a natural number encoded in unary, and din, dacc ∈ ∆ are
domino-types. Given k ∈ N, a k-grid of I is a mapping f : [0, `]× [0,Tower(n, k)−1]→ ∆ for
some ` ∈ N. Intuitively, a k-grid is a finite grid, where each row consists of Tower(n, k) cells,
and each cell contains a domino type. A k-tiling of I is a k-grid f satisfying the following
additional constraints:
Initialisation and Acceptance: f(0, 0) = din and f(`, j) = dacc for some j ∈ [0,Tower(n, k)−

1];
Row adjacency-requirement: two adjacent cells in a row have the same color on the shared

edge: for all (i, j) ∈ [0, `]× [0,Tower(n, k)− 2], [f(i, j)]right = [f(i, j + 1)]left
Column adjacency-requirement: two adjacent cells in a column have the same color on the

shared edge: for all (i, j) ∈ [0, `− 1]× [0,Tower(n, k)− 1], [f(i, j)]up = [f(i+ 1, j)]down.

Given k ∈ N, the problem of checking the existence of a k-tiling for I is k-Expspace-
complete [3]. Hence, Theorem 22 directly follows from the following proposition.

I Proposition 23. Let k ≥ 0. There is a fixed formula ϕk of LTLKk+1
⋂

CTLKk+1 such
that one can build, in time polynomial in the size of the given instance I, a Kripke structure
MI,k with two agents so that I has a k-tiling iff MI,k |=sy ϕk (resp., MI,k |=as ϕk).

Proof of Proposition 23 for the synchronous setting We first provide a proof of
Proposition 23 for the synchronous setting. At the end of this section, we explain the easy
adaptation for the asynchronous case. Fix k ≥ 0. In the following, we assume that k ≥ 1
(the proof of Proposition 23 for the case k = 0 being simpler). First, we define a suitable
encoding of the k-grids by infinite words over the set AP of atomic propositions given by
AP := Main ∪ Tags, where

12 The Complexity of Model Checking Knowledge and Time

Main := ∆ ∪ {$1, . . . , $k, $, acc,⊥, 0, 1}

Tags := {#1,#2, col, good} ∪
h=k⋃
h=1
{(h,=), (h, inc), (inc, h)}

The propositions in Main are used to encode the k-grids, while the propositions in Tags,
whose meaning will be explained later, are used to mark in a suitable way the codes of
k-grids. Essentially, the unmarked code of a k-grid f is obtained by concatenating the codes
of the rows of f starting from the first row and adding the suffix accω if f satisfies the
acceptance requirement, and the suffix ⊥ω otherwise. The code of a row is in turn obtained
by concatenating the codes of the row’s cells starting from the first cell.

In the encoding of a cell of a k-grid, we keep track of the content of the cell together with
a suitable encoding of the cell number which is a natural number in [0,Tower(n, k)−1]. Thus,
for all 1 ≤ h ≤ k, we define the notions of h-block and well-formed h-block. Essentially, for
1 ≤ h < k, well-formed h-blocks are finite words over {$1, . . . , $h, 0, 1} which encode integers
in [0,Tower(n, h)− 1], while well-formed k-blocks are finite words over ∆ ∪ {$1, . . . , $k, 0, 1}
which encode the cells of k-grids. In particular, for h > 1, a well-formed h-block encoding
a natural number m ∈ [0,Tower(n, h)− 1] is a sequence of Tower(n, h− 1) (h− 1)-blocks,
where the ith (h−1)-block encodes both the value and (recursively) the position of the ith-bit
in the binary representation of m. Formally, the set of (well-formed) h-blocks is defined by
induction on h as follows:
Base Step: h = 1. The notions of 1-block and well-formed 1-block coincide, and a 1-
block is a finite word bl of length n + 3 having the form bl = $1τbit1 . . . bitn$1 such that
bit1, . . . , bitn ∈ {0, 1} and τ ∈ {0, 1} if 1 < k, and τ ∈ ∆ otherwise. For all 1 ≤ ` ≤ n, we say
that bit` is the `th bit of bl. The content of bl is τ , and the index of bl is the natural number
in [0,Tower(n, 1)− 1] (recall that Tower(n, 1) = 2n) whose binary code is bit1 . . . bitn. The
1-block bl is initial (resp., final) if biti = 0 (resp., biti = 1) for all 1 ≤ i ≤ n.
Induction Step: 1 < h ≤ k. An h-block is a finite word bl having the form $hτbl0 . . . blj$h
such that j > 0, bl0, . . . , blj are (h− 1)-blocks, and τ ∈ {0, 1} if h < k, and τ ∈ ∆ otherwise.
Additionally, we require that bl0 is initial, blj is final, and for all 0 < i < j, bli is not
final. The content of bl is τ . The h-block bl is initial (resp., final) if the content of bli is 0
(resp., 1) for all 0 ≤ i ≤ j. The h-block bl is well-formed if additionally, the following holds:
j = Tower(n, h − 1) − 1 and for all 0 ≤ i ≤ j, bli is well-formed and has index i. If bl is
well-formed, then its index is the natural number in [0,Tower(n, h)− 1] whose binary code
is given by bit0, . . . , bitj , where biti is the content of the sub-block bli for all 0 ≤ i ≤ j.
Encoding of k-grids A row-code is a finite word wr = $bl0 . . . blj$ satisfying the following:

bl0, . . . , blj are k-blocks;
bl0 is initial and blj is the unique final k-block.

The row-code wr is well-formed if additionally, j = Tower(n, k)− 1 and for all 0 ≤ i ≤ j, bli
is well-formed and has index i. A k-grid code (resp., well-formed k-grid code) is an infinite
word over AP of the form w · τω such that (i) w is a finite sequence of row-codes (resp.,
well-formed row-codes), and (ii) τ = acc if the last row-code of w contains a block whose
content is dacc (acceptance), and τ = ⊥ otherwise. A k-grid code is initialised if the first
k-block of the first row-code is din. Note that while k-grid codes encode grids of I having
rows of arbitrary length, well-formed k-grid codes encodes the k-grids of I. In particular,
there is exactly one well-formed k-grid code associated with a given k-grid of I.
Construction of MI,k in Proposition 23 for the synchronous case For the fixed
k ≥ 1, we now illustrate the construction of the finite Kripke structure MI,k over two agents,
say a1 and a2, in Proposition 23. Essentially, MI,k nondeterministically generates all the

L. Bozzelli, B. Maubert and A. Murano 13

initialised k-grid codes with the additional ability of nondeterministically marking some
positions with the propositions in Tags. The main idea is to decompose the verification that
a k-grid code is well-formed and encodes a k-tiling in layers implementable with polynomially
many states of MI,k, and invoking other layers thanks to the knowledge modalities for the
two agents a1 and a2. In particular, the propositions in Main are observable by both agents,
while the tag propositions in Tags \ {#1,#2} are not observable by any agent. For the
remaining two tag propositions #1 and #2, #1 (resp., #2) is observable by agent a1 (resp.,
a2) but not observable by agent a2 (resp., a1).

We now define the marking performed by the Kripke structure MI,k. For a word w over
2AP, the content of w is the word over 2AP\Tags obtained by removing from each letter in
w the propositions in Tags. Let 1 ≤ h ≤ k. A tagged h-block is a word bl over 2AP whose
content is an h-block and:

the initial position of bl is marked by the tag #1 if h is odd, and the tag #2 otherwise;
if h = 1, then there is 1 ≤ ` ≤ n such that the `th bit of bl is marked by the tag #2;
if h > 1, there is exactly one (h− 1)-sub-block sb of bl whose first position is marked by
the tag #2 if h is odd, and the tag #1 otherwise;
no other position of bl is marked.
A simple tagged h-block bl is defined in a similar way but we require that only the first

position of bl is marked.
The initialised k-grid codes are marked by the Kripke structure MI,k as follows. A tagged

k-grid code is an infinite word ν over 2AP such that the content of ν is an initialised k-grid
code and one of the following holds.

(h,=)-tagging with 1 ≤ h ≤ k: there are two tagged h-blocks bl and bl ′ along ν such that
bl ′ follows bl and:

if h = 1, then the marked bit of bl has the same position as the marked bit of bl ′;
each position in ν following the last position of bl ′ is marked by the tags in O where
{(h,=)} ⊆ O ⊆ {(h,=), good}, and good ∈ O iff either h = 1 and the marked bit of bl has
the same value as the marked bit of bl ′, or h > 1 and the marked sub-block of bl and the
marked sub-block of bl ′ have the same content.
no other position of ν is marked.

(h, inc)-tagging with 1 ≤ h ≤ k: there are two tagged h-blocks bl and bl ′ along ν such that
bl ′ follows bl and:

if h = 1, then the marked bit of bl has the same position as the marked bit of bl ′;
bl and bl ′ are adjacent within the same (h + 1)-block if h < k, and within the same
row-code otherwise;
each position in ν following the last position of bl ′ is marked by the tags in O where
{(h, inc)} ⊆ O ⊆ {(h, inc), good}, and:

case h = 1: let i0 be the position of the least significant (i.e., rightmost) bit of bl whose
value is 0 (note that since bl and bl ′ are adjacent, our encoding ensures that such a bit
exists). Then, we require that good ∈ O if and only if the marked bits of bl and bl ′
have the same value if the marked bit of bl precedes the ith0 bit of bl, and the marked
bits of bl and bl ′ have distinct value otherwise.
case h > 1: let sb0 be the last (h− 1)-sub-block of bl whose content is 0 (since bl and
bl ′ are adjacent, our encoding ensures that such a sub-block sb0 exists). Then, we
require that good ∈ O if and only if the marked sub-blocks of bl and bl ′ have the same
content if the marked sub-block of bl precedes sb0, and the marked sub-blocks of bl
and bl ′ have distinct content otherwise.

14 The Complexity of Model Checking Knowledge and Time

no other position of ν is marked.

simple (inc, h)-tagging with 1 ≤ h ≤ k: there are two simple tagged h-blocks bl and bl ′
along ν such that bl ′ follows bl and:

bl and bl ′ are adjacent within the same (h + 1)-block if h < k, and within the same
row-code otherwise;
case h < k: each position in ν following the last position of bl ′ is marked by the tag
(inc, h);
case h = k: each position in ν following the last position of bl ′ is marked by the tags in O
where {(inc, k)} ⊆ O ⊆ {(inc, k), good}. Moreover, good ∈ O iff [d]right = [d ′]left, where
d ∈ ∆ (resp., d ′ ∈ ∆) is the content of bl (resp., bl ′);
no other position of ν is marked.

column-tagging: there are two simple tagged k-blocks bl and bl ′ along ν such that bl ′
follows bl and:

bl and bl ′ belong to two adjacent row-codes in ν;
each position in ν following the last position of bl ′ is marked by the tags in O where
{col} ⊆ O ⊆ {col, good}, and good ∈ O iff [d]up = [d ′]down, where d ∈ ∆ (resp., d ′ ∈ ∆) is
the content of bl (resp., bl ′);
no other position of ν is marked.

A partial tagged k-grid code is the prefix of some tagged k-grid code whose last position
is labelled by tags in Tags \ {#1,#2}. Thus, we have four different types of partial tagged
k-grid codes ρ, where a type is identifiable by the tag proposition in Tags \ {#1,#2, good}
which marks the last position of ρ. The additional proposition good is used to check whether
some additional condition is fulfilled depending on the specific type. Intuitively, partial
(h,=)-tagged k-grid codes are exploited as nested layers for checking that distinct well-formed
h-blocks along the given initialised k-grid code have the same index, while partial (h, inc)-
tagged k-grid codes are used as nested layers to check that the indices of adjacent h-blocks bl1
and bl2 are consecutive (i.e, bl1 is not final and the index of bl2 is the index of bl1 plus one).
Finally, partial simple (inc, h)-tagged k-grid codes and partial column-tagged k-grid-codes are
exploited as first-level layers for verifying well-formedness and the row adjacency-requirement
and column adjacency-requirement.

Let M be a Kripke structure over AP with valuation function V . Given a history τ
(resp., a path π), the trace of τ (resp., π) is the finite (resp., infinite word) over 2AP given by
V (τ0) . . . V (τm−1) where m = |τ | (resp., V (π0)V (π1) . . .). A trace of M is a trace of some
history or path in M . By construction, the following result is straightforward.

I Lemma 24. Let k ≥ 1. One can construct in time polynomial in the size of I, a finite
Kripke structure MI,k = (AP, S,R, V, {∼a}a∈{a1,a2}, s

ι) over two agents a1 and a2 such that:
1. the set of finite traces of MI,k coincides with the set of prefixes of tagged k-grid codes;2
2. the set of infinite traces of MI,k contains the set of initialised k-grid codes;
3. for all i = 1, 2 and states s and s′, s ∼ai s

′ iff V (s)∩(Main∪{#i}) = V (s′)∩(Main∪{#i}).

Construction of the fixed formula ϕk in Proposition 23 A K-propositional formula
is a CTLK∗ formula which only contains the knowledge modalities, Boolean connectives, and
atomic propositions. For each h ∈ N, a Kh-propositional formula is a K-propositional formula
with alternation depth h. Let k ≥ 1 and MI,k be the Kripke structure of Lemma 24. By

2 note that the prefix of an initialised k-grid code is always the prefix of some tagged k-grid code

L. Bozzelli, B. Maubert and A. Murano 15

Lemma 24, the indistinguishability relations ∼ai of MI,k (for i = 1, 2) depend only on the
valuation function. Hence, histories which have the same trace are indistinguishable by any
agent and satisfy the same K-propositional formulas. Thus, for a finite trace ρ of MI,k and a
K-propositional formula, we write ρ |= ψ to mean that τ |= ψ under the SPR semantics for
any history whose trace is ρ. The core result in the proposed reduction is represented by the
following lemma which together with Lemma 24 concludes the proof of Proposition 23 for
the SPR semantics.

I Lemma 25. Let k ≥ 1 and MI,k be the Kripke structure of Lemma 24. Then there are
a fixed LTLKk+1

⋂
CTLKk+1 formula ϕk and for all 1 ≤ h ≤ k, two fixed Kh-propositional

formulas ϕh= and ϕhinc such that the following holds:
1. Let ρ be a partial (h,=)-tagged k-grid code. If the two tagged h-blocks bl and bl ′ of ρ are

well-formed, then ρ |= ϕh= iff bl and bl ′ have the same index.
2. Let ρ be a partial (h, inc)-tagged k-grid code. If the two tagged h-blocks bl and bl ′ of ρ are

well-formed, and bl precedes bl ′, then ρ |= ϕhinc iff the indices of bl and bl ′ are consecutive.
3. MI,k |= ϕk iff there is a path of MI,k whose trace is a well-formed k-code encoding a

k-tiling of I.

Proof. We first prove Properties 1 and 2. This is done by induction on 1 ≤ h ≤ k. We also
show that ϕh= (resp., ϕhinc) is a fixed Kh-propositional formula of the form Kai

ψ, where i = 1
if h is odd, and i = 2 otherwise. Here, we focus on Property 2 (the proof of Property 1 is
similar).

Let ρ be a partial (h, inc)-tagged k-grid code such that the tagged h-blocks bl and bl ′ of
ρ are well-formed and bl ′ follows bl.

For the base case, assume that h = 1. By construction, the first position of bl (resp.,
bl ′) is marked by #1, and the marked bit of bl (resp., bl ′) is marked by #2. Moreover, the
last position of ρ is marked by the tags in O, where {(1, inc)} ⊆ O ⊆ {(1, inc), good}. Let Π
be the set of partial (1, inc)-tagged k-grid codes ρ′ having the same content as ρ and the
same marked #1-positions as ρ (i.e., ρ and ρ′ mark the same two adjacent 1-blocks). By
construction, the indices of bl and bl ′ are consecutive if and only if for each ρ′ ∈ Π, the last
position of ρ′ is marked by good. By Lemma 24, Π coincides with the set of finite traces of
MI,k which are SPR a1-indistinguishable from ρ and whose last position is tagged by (1, inc).
Hence, the fixed K1-propositional formula ϕ1

inc capturing Property 2 for h = 1 is given by
Ka1((1, inc)→ good).

Now assume that h > 1 and h is odd (the case where h is even being similar). By
construction, the first position of bl (resp., bl ′) is marked by #1, and the marked (h− 1)-sub-
block of bl (resp., bl ′) is marked by #2. Moreover, the last position of ρ is marked by the
tags in O, where {(h, inc)} ⊆ O ⊆ {(h, inc), good}. Let Π be the set of partial (h, inc)-tagged
k-grid codes ρ′ having the same content as ρ and the same marked #1-positions as ρ (i.e., ρ
and ρ′ mark the same two adjacent h-blocks). By construction, the indices of bl and bl ′ are
consecutive if and only if for each ρ′ ∈ Π such that the two #2-marked (h− 1)-sub-blocks of
ρ′ have the same index, it holds that the last position of ρ′ is marked by good. By Lemma 24,
Π coincides with the set of finite traces of MI,k which are SPR a1-indistinguishable from ρ

and whose last position is tagged by (h, inc). Moreover, for each ρ′ ∈ Π, the set of partial
(h − 1,=)-tagged k-grid codes which have the same content as ρ′ and the same marked
#2-positions as ρ′ (i.e., the initial positions of the two #2-marked (h − 1)-sub-blocks of
ρ′) coincides with the set of finite traces of MI,k which are SPR a2-indistinguishable from
ρ′ and whose last position is tagged by (h − 1,=). Thus, by the induction hypothesis on
Property 1, the fixed Kh-propositional formula ϕhinc capturing Property 2 when h is odd is

16 The Complexity of Model Checking Knowledge and Time

given by Ka1

(
((h, inc) ∧Ka2((h− 1,=) ∧ ϕh−1

=))→ good
)
. Note that since h− 1 is even, by

the induction hypothesis ϕh−1
= is of the form Ka2ψ. Hence, ϕhinc has alternation depth h.

Proof of Property 3. We now illustrate the construction of the fixed LTLKk+1
⋂

CTLKk+1
formula ϕk ensuring Property 3 of Lemma 25. For this, by exploiting the K-propositional
formulas ϕh= and ϕhinc, we first construct, for all 2 ≤ h ≤ k, a Kh-propositional formula
ϕhbl, and two Kk+1-propositional formulas ϕrow and ϕcol satisfying the following for each
initialised k-grid code ν:

if all the (h − 1)-blocks in ν are well-formed, then ν≤i |= ϕhbl for all i ≥ 0 iff all the
h-blocks in ν are well-formed too;
if all k-blocks in ν are well-formed, then ν≤i |= ϕrow for all i ≥ 0 iff the row-codes in ν
are well-formed and for all adjacent k-blocks bl and bl ′ in a row-code of ν such that bl ′
follows bl, [d]right = [d ′]left, where d ∈ ∆ (resp., d ′ ∈ ∆) is the content of bl (resp., bl ′).
if ν is well-formed, then ν≤i |= ϕcol for all i ≥ 0 iff for all the k-blocks bl and bl ′ such
that bl and bl ′ belong to two adjacent row-codes, bl ′ follows bl, and bl and bl ′ have the
same index, it holds that [d]up = [d ′]down, where d ∈ ∆ (resp., d ′ ∈ ∆) is the content of
bl (resp., bl ′).

Intuitively, the formulas ϕ2
bl, . . . , ϕ

k
bl, ϕrow, and ϕcol require that an initialised k-grid code

is well-formed and satisfies the column adjacency-requirement and the row adjacency-
requirement. First, let us define the formula ϕhbl where 2 ≤ h ≤ k. Assume that h is
even (the other case where h is odd being similar). Let ν be an initialised k-grid code whose
(h− 1)-blocks are well-formed. In order to ensure that the h-blocks of ν are well-formed as
well, we need to require that adjacent (h− 1)-blocks of ν belonging to the same h-block have
consecutive indices. For this, we exploit the Kh−1-propositional formula ϕh−1

inc and the simple
(inc, h− 1)-tagging. Since h− 1 is odd, in a partial simple (inc, h− 1)-tagging k-grid code ρ,
the first positions of the adjacent tagged (h− 1)-blocks of ρ are marked by #1, and the same
holds for partial (h− 1, inc)-tagged k-grid codes. Thus, formula ϕhbl is defined as follows.

ϕhbl := Ka2

(
(inc, h− 1)→ Ka1((h− 1, inc)→ ϕhinc)

)
By Lemma 24, under the SPR semantics, the knowledge modality Ka2 together with the tag
proposition (inc, h−1) allow to select all and only the partial simple (inc, h−1)-tagging k-grid
codes which have the same content as the current prefix of ν, while the nested knowledge
modality Ka1 and the tag proposition (h − 1, inc) allow to select all and only the partial
(h − 1, inc)-tagged k-grid codes which have the same content as the current prefix of ν.
Hence, by Property 2, correctness of the construction directly follows. The definition of the
Kk+1-propositional formulas ϕrow and ϕcol follows a similar pattern. Here, we focus on the
construction of ϕcol which exploits the column-tagging and the formula ϕk=. Assuming that
k is odd, ϕcol is defined as follows:

ϕcol := Ka2

(
[col ∧Ka1((k,=) ∧ ϕk=)]→ good

)
Given an initialised well-formed k-grid code ν, the formula above asserts that for all partial
column-tagged k-grid codes ρ having the same content as the current prefix of ν, if the
two simple tagged k-blocks of ρ have the same index, then [d]up = [d ′]down, where d (resp.,
d ′) is the content of the first (resp., second) simple tagged-block of ρ. Thus, since in
partial columns-tagged k-grid codes, the two simple tagged k-blocks belong to two adjacent
row-codes, correctness of the construction directly follows.

L. Bozzelli, B. Maubert and A. Murano 17

Finally, the fixed LTLKk+1
⋂

CTLKk+1 formula ϕk ensuring Property 3 of Lemma 25 is
defined as follows:

ϕk := E
(
(
∧

t∈Tags
¬t ∧ ϕrow ∧ ϕcol ∧

k∧
h=2

ϕhbl) U acc
)

which by Lemma 24 ensures the existence of a path of MI,k whose trace is an initialised
well-formed k-grid code encoding a k-tiling. This concludes the proof of Lemma 25. �

Proof of Proposition 23 for the asynchronous setting For the asynchronous case,
we slightly modify the construction of model MI,k in Lemma 24 by incorporating a bit
represented by a fresh atomic proposition pb that is flipped at every transition and is observed
by all agents. In such a way the resulting model M ′I,k generates the same traces as MI,k
(modulo pb), and for all histories τ and τ ′, τ ≈as

a τ ′ iff τ ≈s
a τ
′ (the asynchronous and

synchronous semantics coincide). Formally, let MI,k = (AP, S,R, V, {∼a}a∈Ag, s
ι). We

define M ′I,k = (AP ∪ {pb}, S × {0, 1}, R′, V ′, {∼′a}a∈Ag, (sι, 0)) where
(s, i)R′(s′, j) if sRs′ and j = 1− i

V ′(s, i) =
{
V (s) if i = 0
V (s) ∪ {pb} otherwise

(s, i) ∼′a (s′, j) if s ∼a s′ and i = j

It is clear that M ′I,k generates the same traces as M ′I,k, modulo the valuations of pb. It
is also clear that all agents observe every step, so that the asynchronous and synchronous
semantics coincide. Also, since the bit i ∈ {0, 1} is reflected by pb, it is also the case that
histories that have the same trace are indistinguishable for both agents and satisfy the same
K-propositional formulas, so that all the reasoning in the proof of Lemma 25 still holds.
Finally, since the formulas built for Lemma 25 do not mention pb, we obtain thatMI,k |=sy ϕk
iff M ′I,k |=as ϕk, which concludes the proof of Proposition 23 for the asynchronous case.

6 Conclusion

In this work we settle the exact complexity of model checking epistemic temporal logics
with synchronous and asynchronous perfect recall, a 20-year-old problem, by showing that
it is (k − 1)-Expspace-complete for formulas of alternation depth at most k ≥ 1. This
almost closes the picture for the 96 logics identified by Halpern and Vardi in their seminal
work on epistemic temporal logics [14], with the exception of the “no learning” assumption
which has, up to our knowledge, never been studied in conjunction with model checking. As
mentioned in the introduction, most cases seem to boil down to already known cases for
bounded memory. The only exception is for synchronous bounded memory for CTLK, which
we plan to investigate in order to finally close the full picture.

References

1 Rajeev Alur, Pavol Černỳ, and Swarat Chaudhuri. Model checking on trees with path
equivalences. In TACAS, pages 664–678. Springer, 2007.

2 Guillaume Aucher. Supervisory control theory in epistemic temporal logic. In AAMAS, pages
333–340, 2014. URL: http://dl.acm.org/citation.cfm?id=2615787.

3 P. Van Emde Boas. The Convenience of Tilings. In Complexity, Logic, and Recursion Theory,
pages 331–363. Marcel Dekker Inc, 1997.

http://dl.acm.org/citation.cfm?id=2615787

18 The Complexity of Model Checking Knowledge and Time

4 Laura Bozzelli, Bastien Maubert, and Sophie Pinchinat. Uniform strategies, rational relations
and jumping automata. Inf. Comput., 242:80–107, 2015. URL: http://dx.doi.org/10.1016/
j.ic.2015.03.012, doi:10.1016/j.ic.2015.03.012.

5 Krishnendu Chatterjee, Laurent Doyen, Thomas A. Henzinger, and Jean-François Raskin.
Algorithms for omega-regular games with imperfect information. In CSL, pages 287–302, 2006.

6 Francien Dechesne and Yanjing Wang. To know or not to know: epistemic approaches to
security protocol verification. Synthese, 177(1):51–76, 2010.

7 Cătălin Dima. Revisiting satisfiability and model-checking for ctlk with synchrony and
perfect recall. In CLIMA, pages 117–131, 2009. URL: https://doi.org/10.1007/
978-3-642-02734-5_8, doi:10.1007/978-3-642-02734-5_8.

8 E. Allen Emerson and Joseph Y. Halpern. “Sometimes” and “not never” revisited: on branching
versus linear time temporal logic. J. ACM, 33(1):151–178, 1986.

9 E Allen Emerson and Chin-Laung Lei. Modalities for model checking: Branching time logic
strikes back. Sci. Comput. Program., 8(3):275–306, 1987.

10 Kai Engelhardt, Peter Gammie, and Ron Van Der Meyden. Model checking knowledge and
linear time: PSPACE cases. In LFCS, pages 195–211. Springer, 2007.

11 Ronald Fagin, Joseph Y Halpern, Yoram Moses, and Moshe Vardi. Reasoning about knowledge.
MIT press, 2004.

12 Joseph Y. Halpern and Kevin R. O’Neill. Anonymity and information hiding in multiagent
systems. J. Comput. Secur., 13(3):483–512, 2005. URL: http://content.iospress.com/
articles/journal-of-computer-security/jcs237.

13 Joseph Y. Halpern, Ron van der Meyden, and Moshe Y. Vardi. Complete axiomatizations
for reasoning about knowledge and time. SIAM J. Comput., 33(3):674–703, 2004. URL:
https://doi.org/10.1137/S0097539797320906, doi:10.1137/S0097539797320906.

14 Joseph Y Halpern and Moshe Y Vardi. The complexity of reasoning about knowledge and
time. In STOC, pages 304–315. ACM, 1986.

15 Joseph Y. Halpern and Moshe Y. Vardi. The complexity of reasoning about knowledge and
time. 1. Lower bounds. J Comput. Syst. Sci., 38(1):195–237, 1989. doi:10.1145/12130.12161.

16 Xiaowei Huang, Qingliang Chen, and Kaile Su. The complexity of model checking succinct
multiagent systems. In IJCAI, pages 1076–1082, 2015. URL: http://ijcai.org/Abstract/
15/156.

17 Xiaowei Huang and Ron van der Meyden. The complexity of epistemic model checking: Clock
semantics and branching time. In ECAI, pages 549–554, 2010.

18 Jeremy Kong and Alessio Lomuscio. Symbolic model checking multi-agent systems against
CTL*K specifications. In AAMAS, pages 114–122, 2017. URL: http://dl.acm.org/citation.
cfm?id=3091147.

19 Richard E. Ladner and John H. Reif. The logic of distributed protocols. In TARK, pages
207–222, 1986.

20 Alessio Lomuscio and Franco Raimondi. The complexity of model checking concurrent
programs against CTLK specifications. In AAMAS, pages 548–550, 2006. URL: https:
//doi.org/10.1145/1160633.1160733, doi:10.1145/1160633.1160733.

21 Rohit Parikh and Ramaswamy Ramanujam. Distributed processes and the logic of knowledge.
In Logic of Programs, pages 256–268, 1985.

22 Amir Pnueli. The temporal logic of programs. In FOCS, pages 46–57. IEEE, 1977.
23 Bernd Puchala. Asynchronous omega-regular games with partial information. In MFCS, pages

592–603, 2010.
24 Franco Raimondi. Model checking multi-agent systems. PhD thesis, University of London,

2006.
25 John H. Reif. The complexity of two-player games of incomplete information. J. Comput.

Syst. Sci., 29(2):274–301, 1984. doi:10.1016/0022-0000(84)90034-5.

http://dx.doi.org/10.1016/j.ic.2015.03.012
http://dx.doi.org/10.1016/j.ic.2015.03.012
http://dx.doi.org/10.1016/j.ic.2015.03.012
https://doi.org/10.1007/978-3-642-02734-5_8
https://doi.org/10.1007/978-3-642-02734-5_8
http://dx.doi.org/10.1007/978-3-642-02734-5_8
http://content.iospress.com/articles/journal-of-computer-security/jcs237
http://content.iospress.com/articles/journal-of-computer-security/jcs237
https://doi.org/10.1137/S0097539797320906
http://dx.doi.org/10.1137/S0097539797320906
http://dx.doi.org/10.1145/12130.12161
http://ijcai.org/Abstract/15/156
http://ijcai.org/Abstract/15/156
http://dl.acm.org/citation.cfm?id=3091147
http://dl.acm.org/citation.cfm?id=3091147
https://doi.org/10.1145/1160633.1160733
https://doi.org/10.1145/1160633.1160733
http://dx.doi.org/10.1145/1160633.1160733
http://dx.doi.org/10.1016/0022-0000(84)90034-5

L. Bozzelli, B. Maubert and A. Murano 19

26 Ron van der Meyden. Common knowledge and update in finite environments. Inf. Comput.,
140(2):115–157, 1998. URL: https://doi.org/10.1006/inco.1997.2679, doi:10.1006/inco.
1997.2679.

27 Ron van der Meyden and Nikolay V. Shilov. Model checking knowledge and time in systems
with perfect recall (extended abstract). In FSTTCS, pages 432–445, 1999.

28 Ron van der Meyden and Kaile Su. Symbolic model checking the knowledge of the dining
cryptographers. In CSFW, pages 280–291, 2004.

29 Ron van der Meyden and Moshe Y Vardi. Synthesis from knowledge-based specifications. In
CONCUR, pages 34–49. Springer, 1998.

30 Moshe Y Vardi and Pierre Wolper. Reasoning about infinite computations. Inf. Comp.,
115(1):1–37, 1994.

https://doi.org/10.1006/inco.1997.2679
http://dx.doi.org/10.1006/inco.1997.2679
http://dx.doi.org/10.1006/inco.1997.2679

	Introduction
	Preliminaries
	Epistemic Temporal Logics
	Main result

	Powerset construction
	Information sets and updates
	Powerset construction

	Upper bounds
	Alternation depth one
	Reducing alternation

	Lower bounds
	Conclusion

