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We propose an extension of Strategy Logic (SL), in which one can both reason about strategizing
under imperfect information and about players’ knowledge. One original aspect of our approach is
that we do not force strategies to be uniform, i.e. consistent with the players’ information, at the
semantic level; instead, one can express in the logic itself that a strategy should be uniform. To do
so, we first develop a “branching-time” version of SL with perfect information, that we call BSL, in
which one can quantify over the different outcomes defined by a partial assignment of strategies to
the players; this contrasts with SL, where temporal operators are allowed only when all strategies are
fixed, leaving only one possible play. Next, we further extend BSL by adding distributed knowledge
operators, the semantics of which rely on equivalence relations on partial plays. The logic we obtain
subsumes most strategic logics with imperfect information, epistemic or not.

1 Introduction

Over the past decade, investigation of logical systems for studying strategic abilities has thrived in
the areas of artificial intelligence and multi-agent systems. However, there is still no satisfying logi-
cal framework to model, specify and analyze such systems. One of the proposals most studied so far
is Alternating-time Temporal Logic (ATL) [1], in which one can specify what objectives coalitions of
agents can achieve. Several extensions were introduced (ATL∗, game logics. . . ), but all of these logics
fail to model non-cooperative situations where agents follow individual objectives. It is well known that
studying this kind of situation requires solution concepts from game theory, such as Nash equilibria, that
cannot be expressed in ATL or its extensions.

To address this shortcoming, Chatterjee, Henzinger and Piterman recently introduced Strategy Logic
(SL) [9]. This logic subsumes all extensions of ATL, and because it considers strategies as first-order
citizens in the language, it can express fundamental game-theoretic concepts such as Nash Equilibria
or dominated strategies. SL has recently been extended and intensively studied [19, 17, 18]. Relevant
fragments enjoying nice computational characteristics have been identified. In particular, the syntactic
fragment SL[1G] (One-Goal Strategy Logic) is strictly more expressive than ATL∗, but not computation-
ally more expensive [17].

However, despite its great expressiveness, there is one fundamental feature of most real-life situations
that SL lacks, which is imperfect information. An agent has imperfect information if she does not know
the exact state of the system at every moment, but only has access to an approximation of it. Considering
agents with imperfect information raises two major theoretical issues. The first one concerns strategizing
under imperfect information. Indeed, in this context an agent’s strategy must prescribe the same choice in
all situations that are indistinguishable to the agent. Such strategies are called uniform strategies, and this
requirement deeply impacts the task of computing strategies [21]. The second main theoretical challenge
relates to uncertainty, deeply intertwined with imperfect information, and it consists of representing and
reasoning about agents’ knowledge. Over the past decades, much effort has been put into devising logical
systems that address this issue, first in static settings [10] and later adding dynamics [11, 5].
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Concerning ATL, many variants have been introduced that deal with imperfect information [12, 14,
22, 13]. Some of these numerous logics deal with strategizing under imperfect information, some with
reasoning about knowledge; because it is not natural to reason about the knowledge of agents with
imperfect information without treating the strategic aspects accordingly, as argued in [14], some treat
both aspects. But there still remain a number of logics that do so, and that essentially differ in the
semantics of the strategic operator: how much memory do agents have? should agents simply have a
strategy to achieve some goal? Or should they know that there is a strategy to do so? Or know a strategy
that works? The two last notions are usually referred to as de dicto and de re strategies, respectively [14].

About SL, very few works have considered imperfect information. [2] and [8] propose epistemic
extensions of SL, but they do not require strategies to be uniform i.e. being consistent with the agents’
information. In [3], an epistemic strategy logic is proposed in which uniform strategies are considered,
and interestingly the de re semantics of the strategic operator can be expressed in the de dicto semantics,
providing some flexibility. However, how much memory strategies use , and whether they should be
uniform or not, still has to be hardwired in the semantics.

In this work, we propose yet another epistemic strategy logic, with the purpose of getting rid of the
constraint of enforcing what kind of strategies are to be used at the semantic level. To do so, we first de-
velop a “branching-time” version of SL with perfect information. In SL, temporal operators are allowed
only when all strategies are fixed, leaving only one possible play. We relax this constraint by introducing
a path quantifier, which quantifies over the different outcomes defined by a partial assignment of strate-
gies to the agents. This enables the comparison of the various outcomes of a strategy. Because it will be
important, for instance to express the uniformity of a strategy, to consider all the possible outcomes of
a strategy assigned to an agent a, we need a way to remove in an assignment the bindings of all agents
but a. We thus introduce an unbinding operator. We call the resulting logic Branching-time Strategy
Logic (BSL), and we prove by providing linear translations in both directions that it has the same expres-
sive power and same computational complexity as SL. We also present a variant of BSL, called BSL+,
which can in addition refer to the actions chosen by each agent at each moment, and we conjecture that
it is strictly more expressive than SL and BSL. Next, we define our Epistemic Strategy Logic (ESL) by
further extending BSL with distributed knowledge operators, the semantics of which rely on equivalence
relations on partial plays. We do not change the semantics of the strategy quantifier to require them to be
uniform, or de re, or de dicto, or memoryless, but we rather show that all of these properties of strategies
can be expressed in the language, which thus subsumes most, if not all, the variants of epistemic strategic
logics with imperfect information that we know about.

The paper is structured as follows. In Section 2 we recall the models, syntax and semantics of SL. In
Section 3, we define BSL and BSL+, and we prove that SL and BSL are equiexpressive. We then present
ESL in Section 4, where we also show how it can express various classic properties of strategies. We
conclude and discuss future work in Section 5. Some proofs are omitted by lack of space.

2 Preliminaries

Let AP be a countable non-empty set of atomic propositions, Ag a non-empty finite set of agents and Ac
a non-empty finite set of actions. We let Dc = AcAg be the set of possible decisions. For d ∈ Dc and
a ∈ Ag, d(a) is the action taken by Agent a in decision d.
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2.1 Concurrent game structures

A concurrent game structure (CGS) is a tuple G = (Q,δ ,sι ,µ), where Q is a countable non-empty set
of states, δ : Q×Dc→ Q is a transition function, sι is the initial state and µ : Q→ 2AP is a valu-
ation function. A path is an infinite word π = s0(d1,s1) . . . ∈ Q · (Dc×Q)ω such that for all i ≥ 0,
si+1 = δ (si,di+1), and an initial path ρ is a finite prefix of a path. In the following, we shall write
s0d1s1 . . . instead of s0(d1,s1) . . ., and similarly for initial paths. For a state s we denote by Pathsω(s)
(resp. Paths∗(s)) the set of paths (resp. initial paths) that start in s, i.e. for which s0 = s. We also let
Pathsω (resp. Paths∗) be the set of all paths (resp. initial paths). For a path π = s0d1s1 . . ., for i, j ≥ 0,
we let π[i] := si, π≤i := s0 . . .disi, π≥i := sidi+1si+1 . . . and π[i, j] := sidi+1 . . .d js j. For an initial path
ρ = s0 . . .dnsn, last(ρ) := sn is its last state and |ρ| := n is the index of its last state. Given two initial paths
ρ = s0d1s1 . . .dnsn and ρ ′ = s′0d′1s′1 . . .d

′
ms′m such that sn = s′0, we let ρ ·ρ ′ := s0d1s1 . . .dnsnd′1s′1 . . .d

′
ms′m

be their concatenation.
A strategy is a total function σ : Paths∗ → Ac that assigns an action to each initial path, and we

let Str be the set of all strategies. Also, given a strategy σ and an initial path ρ ∈ Paths∗ ending in
state s, we define the ρ-translation of σ as the strategy σρ such that for all initial paths ρ ′ ∈ Paths∗(s),
σρ(ρ ′) := σ(ρ ·ρ ′), and for all initial paths ρ ′ ∈ Paths∗(s′) with s′ 6= s, σρ(ρ ′) = σ(ρ ′).

Let Var be a countably infinite set of variables. An assignment is a partial function χ : Ag∪Var⇀ Str,
assigning to each agent and variable in its domain a strategy. For an assignment χ , an agent a and a
strategy σ , χ[a 7→ σ ] is the assignment of domain dom(χ)∪{a} that maps a to σ and is equal to χ on
the rest of its domain, and similarly for χ[x 7→ σ ] where x is a variable; also, χ[a 7→ ?] is the assignment
of domain dom(χ)\ {a}, on which it is equal to χ . Given an assignment χ and a state s, we define the
outcome of χ in s, written Out(s,χ), as the set of paths π = s0d1s1 . . . such that s0 = s, and for all k ≥ 0,
for every agent a in the domain of χ , dk+1(a) = χ(a)(π≤k). We say that an assignment χ is complete if
it assigns a strategy to each agent, i.e. Ag⊆ dom(χ). Given an assignment χ and an initial path ρ ending
in state s, we define the ρ-translation of χ as the assignment χρ such that dom(χρ) = dom(χ), and for
all l ∈ dom(χρ), χρ(l) := χ(l)ρ (l being either a variable or an agent).

Finally, we want (some of) our logics to be able to talk about the precise actions taken by agents. To
do so, we consider the following set of action propositions: AcP := {pa

c | c ∈ Ac and a ∈ Ag}, and we
let AP+ := AP]AcP. In the following, we will therefore always assume that CGSs are unfolded, such
that each state s is reached by one unique transition through some decision ds, except the initial state
sι which has no incoming transition. We can thus extend the valuation function µ into µ+ as follows:
µ+(sι) := µ(sι), and for every state s 6= sι , µ+(s) := µ(s)∪{pa

ds(a)
| a ∈ Ag}.

2.2 Strategy Logic

We recall the syntax and semantics of Strategy Logic (SL). First, the set of formulas in SL is given by
the following grammar:

ϕ := p | ¬ϕ | ϕ ∨ϕ | Xϕ | ϕUϕ | 〈〈x〉〉ϕ | (a,x)ϕ

where p ∈ AP, x ∈ Var and a ∈ Ag.
Notice that SL-formulas cannot talk about agents’ actions.
We define > as p ∨ ¬p. Dual operators can be defined as usual: ⊥:= ¬>,ϕ ∧ ϕ ′ := ¬(¬ϕ ∨

¬ϕ ′),ϕRϕ ′ := ¬(¬ϕU¬ϕ ′) and [[x]]ϕ := ¬〈〈x〉〉¬ϕ , and we also define the classic temporal operators
“eventually” and “always”: Fϕ := >Uϕ , and Gϕ := ϕU ⊥. Recall that 〈〈x〉〉 is the strategy quantifier,
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and (a,x) is the binding operator: 〈〈x〉〉ϕ reads as “there exists a strategy x such that ϕ”, and (a,x)ϕ
reads as “ϕ holds after agent a is bound to the strategy denoted by x”.

For a formula ϕ , Free(ϕ)⊆ Var is the set of free variables in ϕ , i.e. the set of variables x that occur
in ϕ without being under the scope of some quantification 〈〈x〉〉. In the following, given a formula ϕ , an
assignment for ϕ refers to an assignment χ such that Free(ϕ)⊆ dom(χ).

Let ϕ be an SL-formula. Given a CGS G = (Q,δ ,sι ,µ), an assignment χ for ϕ and a state s ∈Q, the
semantics of ϕ in G with assignment χ at state s is defined inductively as follows:

G,χ,s |=SL p if p ∈ µ(s)
G,χ,s |=SL ¬ϕ if G,χ,s 6|=SL ϕ

G,χ,s |=SL ϕ ∨ϕ ′ if G,χ,s |=SL ϕ or G,χ,s |=SL ϕ ′

G,χ,s |=SL 〈〈x〉〉ϕ if there exists σ ∈ Str(s) such that G,χ[x 7→ σ ],s |=SL ϕ

G,χ,s |=SL (a,x)ϕ if G,χ[a 7→ χ(x)],s |=SL ϕ

If, in addition, χ is complete, then

G,χ,s |=SL Xϕ if G,χπ≤1 ,π[1] |=SL ϕ , where π is the only path in Out(s,χ)
G,χ,s |=SL ϕUϕ ′ if there is i≥ 0 such that, letting π be the only path in Out(s,χ),

G,χπ≤i ,π[i] |=SL ϕ ′, and for all 0≤ j < i, G,χπ≤ j ,π[ j] |=SL ϕ .
Finally, we define an SL-sentence to be an SL-formula ϕ such that Free(ϕ) = /0 and every temporal

operator in ϕ is under the scope of a binding for each agent.

3 Branching-time Strategy Logic

We now present a first extension of Strategy Logic. In SL, temporal operators are allowed only when
every agent has been assigned a strategy, which leaves only one possible outcome. Here we relax this
constraint: a temporal formula can be evaluated on the outcome of a partial strategy assignment. The
outcome of such an assignment is a tree that contains all paths corresponding to all possible completions
of the assignment, which is why we use the path quantification of branching-time temporal logic. We
also add the unbinding operator as considered in e.g. [16], making it possible to unbind an agent from
its strategy. We first show that the logic thus obtained, called BSL, has the same expressivity as SL, by
providing linear translations in both directions. The unbinding operator is thus just convenient syntactic
sugar. Then we further extend BSL by allowing it to refer to actions taken by agents, and obtain the logic
BSL+ that, we postulate, is strictly more expressive than SL and BSL. BSL has two advantages: first, the
semantics is slightly cleaner than that of SL, as it is defined for all formulas and all assignments; second,
the unbinding operator makes it possible to easily express that we unbind an agent, at no complexity
cost. Finally, because it can explicitly refer to actions and consider outcomes of partial assignments, it is
possible in BSL+ to express properties of strategies, such as being memoryless or uniform, as we show
in Section 4.

3.1 Syntax

The syntax of BSL adds two operators to SL. First, the path quantifier, borrowed from classic branching-
time temporal logics: Eψ intuitively reads as “there exists an outcome of the currently fixed strategies
in which ϕ holds”. Second, the unbinding operator: (a,?)ϕ means “ϕ holds after Agent a has been
unbound from her strategy, if any”. We define two variants, one (BSL) where formulas cannot talk about
the actions taken by the agents, and one (BSL+) where they can. Also, as for CTL∗, we find it convenient
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to distinguish between state and path formulas. Finally, the set of BSL-formulas (resp. BSL+-formulas)
is the set of state formulas given by the following grammar:

State formulas: ϕ ::= p | ¬ϕ | ϕ ∨ϕ | 〈〈x〉〉ϕ | (a,x)ϕ | (a,?)ϕ | Eψ

Path formulas: ψ ::= ϕ | ¬ψ | ψ ∨ψ | Xψ | ψUψ,

where p ∈ AP (resp. p ∈ AP+), x ∈ Var and a ∈ Ag.
Observe that BSL ⊂ BSL+. In addition to the shorthand defined in Section 2.2, we also define the

dual of the path quantifier: Aϕ := ¬E¬ϕ . Finally, we write BSL+ψ (resp. BSLψ ) for the set of BSL+

(resp. BSL) path formulas.

3.2 Semantics

State formulas are evaluated in a state of (the unfolding of) a CGS, and path formulas in paths. Since
BSL is a syntactical fragment of BSL+, it is enough to define the latter’s semantics.

Let ϕ ∈ BSL+ be a state formula (resp. let ψ ∈ BSL+ψ be a path formula), and let G = (Q,δ ,qι ,µ)
be a CGS. Let s ∈ G be a state, π ∈ Pathsω a path, and let χ be an assignment for ϕ (resp. for ψ). The
semantics of BSL+ is defined inductively as follows:

G,χ,s |=BSL p if p ∈ µ+(s)
G,χ,s |=BSL ¬ϕ if G,χ,s 6|=BSL ϕ

G,χ,s |=BSL ϕ ∨ϕ ′ if G,χ,s |=BSL ϕ or G,χ,s |=BSL ϕ ′

G,χ,s |=BSL 〈〈x〉〉ϕ if there exists σ ∈ Str such that G,χ[x 7→ σ ],s |=BSL ϕ

G,χ,s |=BSL (a,x)ϕ if G,χ[a 7→ χ(x)],s |=BSL ϕ

G,χ,s |=BSL (a,?)ϕ if G,χ[a 7→ ?],s |=BSL ϕ

G,χ,s |=BSL Eψ if there exists π ∈ Out(s,χ) such that G,χ,π |=BSL ψ

G,χ,π |=BSL ϕ if G,χ,π[0] |=BSL ϕ

G,χ,π |=BSL ¬ψ if G,χ,π 6|=BSL ψ

G,χ,π |=BSL ψ ∨ψ ′ if G,χ,π |=BSL ψ or G,χ,π |=BSL ψ ′

G,χ,π |=BSL Xψ if G,χπ≤1 ,π≥1 |=BSL ψ

G,χ,π |=BSL ψUψ ′ if there is i≥ 0 such that G,χπ≤i ,π≥i |=BSL ψ ′, and
for all 0≤ j < i, G,χπ≤ j ,π≥ j |=BSL ψ

The semantics of the unbinding operator comes without surprise: (a,?)ϕ holds in an assignment if ϕ

holds after we have removed a from the domain of this assignment. For the path quantifier, Eψ holds if
there is an outcome of the current assignment in the current state that verifies ψ .

For a BSL+-formula ϕ , we write G,χ |=BSL ϕ if Pathsω(sι),χ,sι |=BSL ϕ . Classically, a BSL+-
sentence is a BSL+-formula without free variables, and similarly for BSL-sentences. For a BSL+-
sentence ϕ , we write G |=BSL ϕ if G,χ |=BSL ϕ for any assignment χ .

3.3 Expressivity of BSL

We establish that BSL and SL have the same expressivity, and postulate that BSL+ is strictly more
expressive than both logics. First, given two logics L and L ′ whose sentences are evaluated on CGS’s,
we say that L ′ subsumes L , written L 4 L ′, if for every L -sentence ϕ there is an L ′-sentence ϕ ′

such that, for every CGS G, G |= ϕ if, and only if, G |= ϕ ′. We say that L and L ′ are equiexpressive if
L 4L ′ and L ′ 4L . We say that L ′ strictly subsumes L , written L ≺L ′, if L 4L ′ and L ′ 64L .

We start with the easy direction, showing that BSL subsumes SL.



6 Dealing with imperfect information in Strategy Logic

Definition 1 The translation tr : SL→ BSL is defined by induction as follows:
tr(p) = p tr(¬ϕ) = ¬tr(ϕ) tr(ϕ ∨ϕ ′) = tr(ϕ)∨ tr(ϕ ′)
tr(Xϕ) = EXtr(ϕ) tr(ϕUϕ ′) = Etr(ϕ)Utr(ϕ ′)
tr(〈〈x〉〉ϕ) = 〈〈x〉〉tr(ϕ) tr((a,x)ϕ) = (a,x)tr(ϕ)

The following proposition easily follows from the fact that a complete assignment defines a unique
path from any state.

Proposition 1 For every CGS G, for every formula ϕ ∈ SL, assignment χ for ϕ state s ∈ G such that
G,χ,s |=SL ϕ is defined, it holds that G,χ,s |=SL ϕ if, and only if, G,χ,s |=BSL tr(ϕ).

Proof sketch We only treat the case of the “next” operator, the one for “until” is similar and all the
others are trivial. Assume that G,χ,s |=SL Xϕ is defined. This means that χ is a complete assignment,
hence Out(s,χ) is a singleton, and the result follows from the semantics of SL and BSL.

We now show that SL also subsumes BSL. Indeed, the path quantifier can be simulated by a series
of existential strategy quantifications and corresponding bindings for the agents whose strategies are
undefined in the current assignment. Concerning the unbinding operator, the idea is to remember, along
the translation, which agents have been unbound, and use this information to correctly translate path
quantifiers, as described above. Formally, we define a translation from BSL to SL, parameterized by the
set of agents who are “currently” not bound to a strategy.

Definition 2 Let A⊆ Ag. The translations tr′A : BSL→ SL and tr′ψA : BSLψ → SL are defined by mutual
induction as follows:

tr′A(p) = p tr′ψA (ψ) = tr′A(ϕ)
tr′A(¬ϕ) = ¬tr′A(ϕ) tr′ψA (¬ψ) = ¬tr′ψA (ψ)
tr′A(ϕ ∨ϕ ′) = tr′A(ϕ)∨ tr′A(ϕ ′) tr′ψA (ψ ∨ψ ′) = tr′ψA (ψ)∨ tr′ψA (ψ

′)
tr′A(〈〈x〉〉ϕ) = 〈〈x〉〉tr′A(ϕ) tr′ψA (Xψ) = Xtr′ψA (ψ)
tr′A((a,x)ϕ) = (a,x)tr′A\{a}(ϕ) tr′ψA (ψUψ ′) = tr′ψA (ψ)Utr′ψA (ψ

′)

tr′A((a,?)ϕ) = tr′A∪{a}(ϕ)
tr′A(Eψ) = 〈〈x1〉〉 . . .〈〈xk〉〉(ai1 ,x1) . . .(aik ,xk)tr′

ψ

A (ψ),
where x1, . . . ,xk are fresh variables and {ai1 , . . . ,aik}= A.

First, observe that if p is a BSL-formula, then it is in AP and not in AcP, so that p is indeed an
SL formula. Before establishing the correctness of the translation, we need the following lemma. It
essentially says that the evaluation of a formula tr′A(ϕ) in an assignment χ is independent of how χ is
defined on A: for an agent a ∈ A, whether χ is defined on a or not, and in the former case how it is
defined, is of no consequence as the translation tr′A remembers that a is not supposed to be bound to a
strategy.

Lemma 1 Let G be a CGS, s ∈ G a state, ϕ ∈ BSL a state formula and χ an s-total assignment for ϕ .
For all A ⊆ Ag, {ai1 , . . . ,aik} ⊆ A and for all σ1, . . . ,σk ∈ Str(s), letting χ1 = χ[ai1 7→ σ1, . . . ,aik 7→ σk]
and χ2 = χ[ai1 7→ ?, . . . ,aik 7→ ?], it holds that:

P1: G,χ,s |=SL tr′A(ϕ) if, and only if, G,χ1,s |=SL tr′A(ϕ), and

P2: G,χ,s |=SL tr′A(ϕ) if, and only if, G,χ2,s |=SL tr′A(ϕ).

Proposition 2 Let G be a CGS. For every state formula ϕ ∈ BSL, assignment χ for ϕ and state s ∈G, it
holds that G,χ,s |=BSL ϕ if, and only if, G,χ,s |=SL tr′Ag\dom(χ)(ϕ).

We can now prove that SL and BSL have the same expressivity on the level of sentences.
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Theorem 1 SL and BSL are equiexpressive, with linear translations in both directions.

Proof We first prove that SL4 BSL. Let ϕ be an SL-sentence. Clearly, tr(ϕ) is a BSL-sentence. Let G
be a CGS with initial state sι , and let χ be any assignment. By definition, G |=SL ϕ iff G,χ,sι |=SL ϕ .
By Proposition 1, G,χ,sι |=SL ϕ iff G,χ,sι |=BSL tr(ϕ), and by definition, the latter is equivalent to
G |=BSL tr(ϕ).

Now, to prove that BSL 4 SL, let ϕ be a BSL-sentence, and let ϕ ′ = tr′Ag(ϕ). Observe that ϕ ′ is
an SL-sentence: indeed, every temporal operator in ϕ is under the scope of some path quantifier, and
by definition of tr′Ag, every temporal operator in ϕ ′ is thus under the scope of a binding for each agent.
Now, let G be a CGS and χ an assignment such that Ag \ dom(χ) = Ag. By definition, G |=BSL ϕ iff
G,χ,sι |=BSL ϕ (recall that since ϕ is a sentence, the choice of χ does not matter for the evaluation
of ϕ). By Proposition 2, the latter is equivalent to G,χ,sι |=SL ϕ ′, which by definition is equivalent to
G |=SL ϕ ′.

Concerning the size of the translations, the one of Definition 1 is clearly linear, and the one in
Definition 2 is in O(2|Ag||ϕ|), where |Ag| is the number of agents and |ϕ| the number of symbols in ϕ .
The translation is thus linear in the size of the formula.

We can therefore transfer to BSL the following results known about SL [18]:

Corollary 1 The model-checking problem for BSL is nonelementary decidable.

Corollary 2 The satisfiability problem for BSL is Σ1
1-hard.

On the other hand, because BSL+ can express properties about the actions taken by agents, it should
clearly be strictly more expressive than BSL and thus also SL, but we have not yet proved this.

Conjecture 1 BSL+ strictly subsumes BSL and SL.

4 Epistemic Strategy Logic

In this section, we further extend the framework to account for imperfect information. For the logic to be
expressive enough to express uniformity of strategies, we need to talk about actions played by the agents,
and we therefore allow the use of atomic propositions in AcP.

4.1 Syntax

We add distributed knowledge operators to the language, one for each group of agents. The syntax of
ESL is therefore described by the following grammar:

State formulas: ϕ ::= p | ¬ϕ | ϕ ∨ϕ | Eϕ | 〈〈x〉〉ϕ | (a,x)ϕ | (a,?)ϕ | DAϕ

Path formulas: ψ ::= ϕ | ¬ψ | ψ ∨ψ | Xψ | ψUψ,

where p ∈ AP+, x ∈ Var and A⊆ Ag.
We define, for each a ∈ Ag, Kaϕ := D{a}ϕ , and as for BSL and BSL+, we write ESLψ for the set of

ESL-path formulas.
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4.2 Semantics

To represent the agents’ imperfect information about the current situation in the game, we add binary
indistinguishability relations in CGSs. Most works consider equivalence relations on states, which are
extended to initial paths according to how much memory agents are supposed to have. Because in this
work we do not want to make any such assumptions, we adopt a more general approach and directly take
equivalence relations on initial paths.

We call imperfect information concurrent game structure (ICGS) a tuple Gi = (G,{∼a}a∈Ag), where
G is a CGS and for each a ∈ Ag, ∼a ⊆ (2AP+

)∗× (2AP+
)∗ is an indistinguishability equivalence relation

for Agent a. For A ⊆ Ag, we let ∼A:= ∩a∈A ∼a: it is the distributed knowledge relation of agents in A.
Given two initial paths ρ = s0d1s1 . . .dnsn and ρ ′ = s′0d1s′1 . . .dms′m and a set of agents A ⊆ Ag, we shall
write ρ ∼A ρ ′ whenever µ+(s0) . . .µ

+(sn) ∼A µ+(s′0) . . .µ
+(s′m), i.e. when the sequences of extended

valuations along the plays are related by ∼A. As usual in epistemic logic, the intended meaning of
ρ ∼a ρ ′ is that in initial path ρ , Agent a considers it possible that ρ ′ is the actual initial path.

Because agents may infer knowledge from what they recall of the past of an initial path, we cannot
evaluate state formulas merely in states of the game as we do for BSL+, but we evaluate them in initial
paths instead. Also, in order not to forget the past when we consider outcomes of an assignment, we
define for every initial path ρ and assignment χ , Out(ρ,χ) := {ρ ·ρ ′ | ρ ′ ∈ Out(last(ρ),χ)}.

Let ϕ ∈ ESL be a state formula (resp. let ψ ∈ ESLψ be a path formula), and let G = (Q,δ ,qι ,µ) be
a CGS. Let χ be an assignment for ϕ (resp. for ψ), let ρ ∈ Paths∗ be an initial path, π ∈ Pathsω a path,
and i≥ 0. The semantics of ESL is defined inductively as follows:

Gi,χ,ρ |=ESL p if p ∈ µ+(last(ρ))
Gi,χ,ρ |=ESL ¬ϕ if Gi,χ,ρ 6|=ESL ϕ

Gi,χ,ρ |=ESL ϕ ∨ϕ ′ if Gi,χ,ρ |=ESL ϕ or Gi,χ,ρ |=ESL ϕ ′

Gi,χ,ρ |=ESL 〈〈x〉〉ϕ if there exists σ ∈ Str such that Gi,χ[x 7→ σ ],ρ |=ESL ϕ

Gi,χ,ρ |=ESL (a,x)ϕ if Gi,χ[a 7→ χ(x)],ρ |=ESL ϕ

Gi,χ,ρ |=ESL (a,?)ϕ if Gi,χ[a 7→ ?],ρ |=ESL ϕ

Gi,χ,ρ |=ESL Eψ if there exists π ∈ Out(ρ,χ) such that Gi,χ,π, |ρ| |=ESL ψ

Gi,χ,ρ |=ESL DAϕ if for every initial path ρ ′ ∈ Paths∗ such that ρ ∼A ρ ′, Gi,χ,ρ
′ |=ESL ϕ

Gi,χ,π, i |=ESL ϕ if Gi,χ,π≤i |=ESL ϕ

Gi,χ,π, i |=ESL ¬ψ if Gi,χ,π, i 6|=ESL ψ

Gi,χ,π, i |=ESL ψ ∨ψ ′ if Gi,χ,π, i |=ESL ψ or Gi,χ,π, i |=ESL ψ ′

Gi,χ,π, i |=ESL Xψ if Gi,χ
π[i,i+1],π, i+1 |=ESL ψ

Gi,χ,π, i |=ESL ψUψ ′ if there is j ≥ i such that Gi,χ
π[i, j],π, j |=ESL ψ ′, and

for all i≤ k < j, Gi,χ
π[i,k],π,k |=ESL ψ

We now give an example of a property that can be expressed in ESL but not in SL, BSL or BSL+.
The property we consider is the uniformity property of strategies, which is central in the paradigm of
imperfect information.

4.3 Properties of strategies

A uniform strategy, in the context of games with imperfect information, usually means a strategy that
respects the player’s information, i.e. a strategy that assigns the same action in situations that are indistin-
guishable to the player [4, 14]. In SL, temporal formulas being only evaluated in complete assignments,
it is clear that one cannot compare several outcomes of a given strategy for a player, so that it is hopeless
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to express such uniformity properties. In BSL, one can consider all the possible outcomes of a strategy,
but one cannot talk about the actions taken by agents, so that expressing that a strategy assigns the same
action in different situations is not possible either. In BSL+, we can refer to the precise actions taken by
the agents, but we have no way of relating situations that are indistinguishable to an agent. However, as
we show below, ESL is expressive enough for this sort of properties.

We define a notion of uniformity, that we call weak uniformity, and that asks for a strategy to be
uniform on all its outcomes from the current situation.

Definition 3 Let Gi = (G,{∼a}a∈Ag) be an ICGS, let ρ ∈ Paths∗ be an initial path and a ∈ Ag an agent.
A strategy σ is weakly uniform for a in ρ if, for all initial paths ρ ′ ∈ Out(ρ, [a 7→ σ ]) and ρ ′′ ∈ Paths∗
such that ρ ′ ∼a ρ ′′, σ(ρ ′) = σ(ρ ′′).

Now let us define the following ESL-formula.

Definition 4 For each a ∈ Ag, we define the formula

a-wUniform-aux := AG(
∨

c∈Ac

KaAXpa
c).

To understand the meaning of this formula, first observe that if an assignment χ binds an agent a to
a strategy σ , i.e. χ(a) = σ , then for every initial path ρ ∈ Paths∗, there is an action c ∈ Ac such that pa

c
holds in all continuations of ρ of the form ρ ′ = ρ ·ds that follow χ: this action is σ(ρ) = d(a), the action
played by Agent a in initial path ρ according to σ . Therefore, Gi,χ,ρ |= AXpa

σ(ρ). It follows that, when
evaluated in an initial path ρ and assignment [a 7→ σ ], where σ is a strategy, formula a-wUniform says
that at every point of every outcome in Out(ρ,χ), there is an action that Agent a plays in all ∼a-related
nodes. Let us fix an ICGS Gi = (G,{∼a}a∈Ag).

Proposition 3 For every initial path ρ ∈ Paths∗ and agent a ∈ Ag, a strategy σ is weakly uniform for
Agent a in ρ if, and only if, Gi, [a 7→ σ ],ρ |= a-wUniform-aux.

However, a-wUniform only has the intended meaning in an assignment that does not bind any other
agent: indeed, otherwise we would only have that the strategy considered is uniform on the subset of its
outcomes that follow the strategies assigned to the other agents. Consider now the following formula:

Definition 5 For each a ∈ Ag, noting {a1, . . . ,ak}= Ag\{a}, we define the formula

a-wUniform := (a1,?) . . .(ak,?)a-wUniform-aux.

The following proposition holds:

Proposition 4 For every initial path ρ ∈ Paths∗, assignment χ and agent a ∈ Ag, a strategy σ is weakly
uniform for Agent a in ρ if, and only if, Gi,χ[a 7→ σ ],ρ |= a-wUniform.

We now illustrate how various semantics of ATL with imperfect information can be expressed in
ESL. We take the example of the ATL formula 〈〈A〉〉Fp, where A ⊆ Ag. Assume that A = {a1, . . . ,ak}
and Ag \A = {ak+1, . . . ,an}. We consider three semantics: the basic one from [15], in which strategies
are just required to be uniform, the de dicto semantics, where in addition the players must know that
there is a strategy to achieve their goal, but may ignore what that strategy is, and the de re semantics, in
which there must exist a strategy that the players know it ensures their goal (see [14], Sec. 3.2). With the
first semantics, 〈〈A〉〉Fp would be translated in ESL as:

〈〈x1〉〉 . . .〈〈xk〉〉(a1,x1) . . .(ak,xk)(
∧

1≤i≤k

ai-wUniform∧AFp).
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For the de dicto semantics, one would write instead:

DA〈〈x1〉〉 . . .〈〈xk〉〉(a1,x1) . . .(ak,xk)(
∧

1≤i≤k

ai-wUniform∧AFp),

while for the de re semantics, one would write:

〈〈x1〉〉 . . .〈〈xk〉〉DA(a1,x1) . . .(ak,xk)(
∧

1≤i≤k

ai-wUniform∧AFp).

One may object that the notion of weak uniformity we consider is too weak compared to the usual
one, which is that a strategy should be equal on all pairs of related initial paths. We argue that it is enough
for a strategy to be uniform on all the initial paths it may be involved in while evaluating the formula.

For instance, in the example above, the objective is AFp, so that it is enough to ensure that strategies
for the agents are uniform on their outcome: if a satisfying set of strategies contains one σi that is not
defined uniformly on some initial paths that are outside its outcome, this σi can easily be turned into a
uniform strategy in the usual sense, it will still satisfy the formula.

Should we consider a more complex objective, in particular involving knowledge, weak uniformity
may not be sufficient though. Consider the ESL formula 〈〈x〉〉(a,x)AGKaAFp, where a ∈ Ag, which
means that Agent a wants a strategy such that she always knows that p will eventually be reached. This
objective not only considers outcomes of the strategy from the current situation, but also outcomes from
initial paths equivalent to the latter outcomes. In this case, we could strengthen the requirement on
Agent a’s strategy by repeating the weak-uniformity requirement after each knowledge operator. In the
example:

〈〈x〉〉(a,x)(a-wUniform∧AGKa(a-wUniform∧AFp)).

Finally, observe that if we introduced an artificial agent amem associated to the relation that relates
two initial paths if they end up in the same state, then the formula amem-wUniform would characterize
strategies that are memoryless on their outcomes from the current initial path, in the sense that their
definition only depends on the last state of each initial path.

5 Conclusion

We have enriched SL with two operators, the path quantifier and the unbinding operator, which are con-
venient but do not add expressivity in the perfect information case; interestingly though, they do not in-
crease complexity either. In the context of imperfect information however, these operators together with
knowledge operators and the ability to talk about actions, allowed us to express properties of strategies
which are usually fixed in the semantics of the logics, such as being uniform, de re, de dicto, memory-
less. . . This feature makes our Epistemic Strategy Logic able to deal with a vast class of agents without
having to change the semantics, and thus unifies many of the previous proposals in the area.

Of course this comes at a price, and the model-checking problem for this logic is certainly un-
decidable with perfect-recall relations and several agents. We believe that the next steps are, first, to
see whether the syntactical fragments studied for SL with perfect information, such as One-Goal or
Boolean-Goal Strategy Logic, can be transferred to BSL and then to ESL, and see whether they enjoy
better complexity properties. The second natural move would be to look at structures which are known
to work well with multiple agents with imperfect information: hierarchical knowledge [7, 20], recurring
common knowledge of the state [6]. . .
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