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Abstract

A general concept of uniform strategies has recently been proposed as a relevant notion
in game theory for computer science, which subsumes various notions from the literature.
It relies on properties involving sets of plays in two-player turn-based arenas equipped
with arbitrary binary relations between plays; these properties are expressed in a lan-
guage based on CTL∗ with a quantifier over related plays. There are two semantics for
our quantifier, a strict one and a full one, that we study separately. Regarding the strict
semantics, the existence of a uniform strategy is undecidable for rational binary relations,
but introducing jumping tree automata and restricting attention to recognizable relations
allows us to establish a 2-Exptime-complete complexity – and still capture a class of
two-player imperfect-information games with epistemic temporal objectives. Regarding
the full semantics, relying on information set automata we establish that the existence
of a uniform strategy is decidable for rational relations and we provide a nonelementary
synthesis procedure. We also exhibit an essentially optimal subclass of rational relations
for which the problem becomes 2-Exptime-complete. Considering rich classes of rela-
tions makes the theory of uniform strategies powerful: it directly entails various results
in logics of knowledge and time, some of them already known, and others new.

Keywords: Games, Imperfect information, Uniform strategies, Logics of knowledge
and time, Rational relations, Jumping automata

1. Introduction

Infinite-duration game models have been intensively studied for their applications in
computer science (Apt and Grädel, 2011) and logic (Grädel et al., 2002). First, infinite-
duration games provide a natural abstraction of computing systems’ non-terminating
interaction (Alur et al., 2002) – think of a communication protocol between a printer
and its users, or control systems. Second, infinite-duration games naturally occur as a
tool to handle logical systems for the specification of non-terminating behaviors, such
as the propositional µ-calculus (Emerson and Jutla, 1991), leading to a powerful theory
of automata, logics and infinite games (Grädel et al., 2002) and to the development of
algorithms for the automatic verification (“model-checking”) and synthesis of hardware
and software systems. In all cases, solving games aims at computing a strategy (of some
distinguished player) whose outcomes fulfill ω-regular conditions meant to describe some
desirable property.
Preprint submitted to Information and Computation May 9, 2018



In essence, ω-regular conditions are evaluated on individual plays, independently of
other plays that result from the strategy. However, turning to imperfect-information
games raises the need to deal with sets of plays, as the strategic decision has to be the
same in indistinguishable situations (Reif, 1984). This typical property of strategies in
imperfect-information games is in general dealt with aside from the ω-regular winning
conditions. However, this splitting is a real issue when considering properties of strategies
that mix, e.g. knowledge and time.

In an attempt to study this problem in depth, Maubert and Pinchinat (2014) intro-
duced a general notion of uniform strategies and showed that it captures a variety of
settings from the literature. Uniformity properties of strategies are expressed in a logic
that combines standard temporal modalities with two new quantifiers, ; and ; , that
universally quantify over “related” plays according to a binary relation between plays.
The difference between the two quantifiers is their range. While the strict quantifier ;

only quantifies over related plays that follow the strategy, the full quantifier ; ranges
over all related plays in the arena.

These quantifiers generalize the knowledge operator K of epistemic temporal logics:
classically, the semantics of K is a universal quantification over histories related to the
actual one by some observational equivalence relation that captures the capabilities of
the agent – perfect/imperfect recall, synchronous/asynchronous, . . . (Halpern and Vardi,
1989). In contrast, the setting of Maubert and Pinchinat (2014) allows arbitrary binary
relations as long as they are rational, i.e. recognized by finite state transducers (Eilenberg,
1974; Berstel, 1979). Noticeably, most equivalence relations used in epistemic temporal
logics are recognized by very simple transducers. Additionally, rational relations need
not be equivalences, and can capture relations used in belief revision, and for modelling
plausibility, with K45 or KD45 axiomatization (Fagin et al., 1995).

In this work we extend the setting of Maubert and Pinchinat (2014) by founding our
logical language L; on the full branching time logic CTL∗ instead of LTL, allowing us
to capture e.g. games with CTL∗ winning conditions and module-checking (Kupferman
and Vardi, 1997). Constraining the uniformity properties to use only either the strict
quantifier or the full quantifier yields the notions of strictly-uniform strategies and fully-
uniform strategies, which we study separately as they require different techniques.

Relying on Maubert and Pinchinat (2013), we first establish the undecidability of
the strictly-uniform strategy problem (i.e. the existence of a strictly-uniform strategy)
when the whole class of rational relations is considered. More precisely, we show that
this undecidability result holds even if we restrict attention to the subclass of regular1

equivalence relations. To try and better understand the difficulty of this problem, we
propose an automata-based approach inspired by Vardi (1991) for solving LTL games.
We introduce and study jumping tree automata (JTA), a class of tree automata which
generalizes standard alternating tree automata. JTA are equipped with a binary relation
between branches of trees and, in addition to the usual behaviour of alternating automata,
they allow for jumps between related nodes of the input tree. Intuitively, the jumps of
JTA “implement” the meaning of the ; quantifier in L;. We show that JTA capture
the full logic L;, and that from a uniformity property we can build a JTA that accepts
the tree unfoldings of strictly-uniform strategies.

1captured by synchronous transducers
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Although the emptiness problem for JTA is unsurprisingly undecidable when con-
sidering arbitrary rational relations over branches of trees, we identify a decidable case
when the class of binary relations between branches is confined to the well-known fam-
ily of recognizable relations; basically, such relations only challenge a bounded amount
of information in each branch. Decidability of JTA emptiness in this case is shown
by an effective transformation of JTA with recognizable relations into equivalent two-
way tree automata. The emptiness problem for JTA with recognizable relations is then
Exptime-complete, and the strictly-uniform strategy problem for this class of relations
is 2-Exptime-complete.

Concerning fully-uniform strategies, deciding their existence (the fully-uniform strat-
egy problem) has been investigated by Maubert and Pinchinat (2014) for the case of linear
time modalities. The problem is in k-Exptime for logical specifications that involve up
to k nested ; quantifiers – 2-Exptime if k ≤ 2. We prove that these complexities still
hold when the full branching time logic CTL∗ is allowed, and we establish the matching
lower bounds. We also introduce information set automata as a tool to compute a gener-
alized notion of information sets for rational relations. Information set automata offer a
modular proof of our decision procedure, and they enable us to identify a rich subclass of
rational relations (K45NM) that still contains relations considered in epistemic temporal
logics and games with imperfect information, and for which the fully-uniform strategy
problem is 2-Exptime-complete.

At last, we generalize these results to the case of multiple relations ;i with corre-
sponding quantifiers ;i and ; i, and we describe how several problems from the literature
fit in this generalized setting. We show that several known results find a unified proof in
our work, and we fill some gaps; we finally take inspiration from other related results to
discuss future work.

The rest of the paper is organized as follows. In Section 2, we recall some notions
concerning words, trees, game arenas and rational relations. We present in Section 3 the
language L; to specify uniform strategies, and we define them, before giving in Section 4
two examples of problems that uniform strategies naturally capture. In Section 5 we
study the strictly-uniform strategy problem: we prove that it is undecidable in general
and, resorting to jumping tree automata, we establish its 2-Exptime-completeness in the
case of recognizable relations. Section 6 starts with the statement of our nonelementary
result for the fully-uniform strategy problem and the elementary case of K45NM relations,
it continues with the exposition of information set automata, which we use to establish
our upper bounds, and the section ends with the proofs for the lower bounds. We
extend our results to the case of multiple relations and combinations of strict and full
quantifiers in Section 7, in which we also state several corollaries and discuss related
work. We conclude and give perspectives in Section 8.

Because of space limitation, some proofs are omitted, and others are just sketched.
However, all details can be found in Maubert (2014).

2. Preliminaries

2.1. Words and trees

For an alphabet Σ, Σ∗ is the set of all finite words over Σ, ε denotes the empty word,
Σ+ = Σ∗ \ {ε} is the set of nonempty finite words and Σω is the set of infinite words.
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For a finite word w we note |w| its length. For a nonempty finite word w = a1 . . . an,
last(w) := an is its last letter. For two finite words w = a1 . . . an and w′ = b1 . . . bm,
w · w′ := a1 . . . anb1 . . . bm is the concatenation of w and w′. A finite word w is a prefix
of a word w′, written w 4 w′, if there exists a word w′′ such that w · w′′ = w′. Finally,
for a word w = a1 . . . an, we note w := an . . . a1 its mirror word.

A tree alphabet Υ is a finite set of directions. A tree is a subset of Υ+ that is closed
for nonempty prefixes, and such that all words in the tree start with the same direction,
called the root. Note that in many works, the root of a tree is the empty word ε. However,
when considering trees that represent strategies in a game, it is convenient for us to see
their root as the initial position of the game. This justifies our slightly unusual definition.
We also define forests which, intuitively, can be seen as unions of trees. Finally, because
the games we define in the next section have only infinite plays, we consider leafless trees
and forests, hence the last point of the following definition.

Definition 1. Given a tree alphabet Υ, a Υ-tree τ , or tree for short when Υ is clear
from the context, is a set of words τ ⊆ Υ+ such that:

1. there is a one symbol word r = τ ∩Υ, called the root, such that r 4 x for all x ∈ τ ,

2. if x · d ∈ τ and x 6= ε, then x ∈ τ , and

3. if x ∈ τ then there exists d ∈ Υ such that x · d ∈ τ .

A Υ-forest, or forest when Υ is understood, is defined likewise, removing Point 1. In
other words a forest is a union of trees.

The following notions of nodes, children, parents and branches, that we define for
trees, are similar for forests. The elements of a tree τ are called nodes. If x 6= ε and
x · d ∈ τ , we say that x · d is a child of x, and that x is the parent of x · d. We will write
x · ↑ for the parent of a node x: (x · d) · ↑ = x. Note that the root has no parent. The
arity of a node x, written arity(x), is the number of children of x. If all nodes have arity
at most k, then τ is a k-ary tree. Note that Υ-trees are |Υ|-ary trees.

A branch is an infinite sequence λ = x0x1 . . . of nodes such that for all i, xi+1 is a
child of xi. For a branch λ = x0x1 . . . and an integer i ≥ 0, λ[i] = xi is the i-th node on
the branch, and λi denotes the i-th suffix xixi+1xi+2 . . . Given a node x of a tree τ , we
let Branches(x) be the set of branches λ = x0x1 . . . that start in node x, i.e. such that
x0 = x. Branches(τ) is the set of all branches in τ .

We classically allow nodes of trees and forests to carry additional information. Given
a labelling alphabet Σ and a tree alphabet Υ, a Σ-labelled Υ-tree, or (Σ,Υ)-tree for
short, is a pair t = (τ, `), where τ is a Υ-tree and ` : τ → Σ is a labelling. For a node
x = d1d2 . . . dn in τ , we define its node word w(x) made of the sequence of labels from
the root to this node: w(x) = `(d1)`(d1d2) . . . `(d1 . . . dn). The notion of (Σ,Υ)-forest
U = (u, `) is defined likewise. Note that we use forests to represent the universe in the
semantics of L; (see Section 3), hence the notations U and u.

We finish this section by defining, given a forest and a node in the forest, the tree to
which this node belongs, i.e. the set of nodes in the forest that have the same root.

Definition 2. Let u be a Υ-forest, and let x = d1 . . . dn be a node of u. We define the tree
ux as the “greatest” tree in the forest u that contains the node x: ux = {y ∈ u | d1 4 y}.
Similarly, given a (Σ,Υ)-forest U = (u, `) and a node x ∈ u, Ux = (ux, `x), where ux is
as above and `x is the restriction of ` to the tree ux.
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2.2. Two-player games played on graphs

We present the notions of arenas, plays and strategies for the classic framework of
two-player turn based games played on graphs.

Arenas

A game arena, or arena for short, is a tuple G = (V,E, Vι, vι), with a set of positions
V = V1]V2 partitioned between positions belonging to Player 1 (V1) and those belonging
to Player 2 (V2). E ⊆ V ×V is a relation between positions, describing the possible moves
between positions, Vι ⊆ V is a set of starting positions and vι ∈ Vι is the initial position.
Vι has no role in the dynamics of the game, it rather is a lever to tune the range of our
full quantifier, as explained in Section 3.2. For two positions v and v′, vE v′ denotes
that (v, v′) ∈ E, and E (v) = {v′ | vE v′} is the set of successors of v. We will assume
that in every position v ∈ V there is at least one possible move, i.e. E (v) 6= ∅. We say
that Player i owns a position v if v ∈ Vi (i ∈ {1, 2}). Also, when there is no ambiguity
we may write v → v′ instead of vE v′.

We will often consider game arenas with additional information attached to positions,
hence the following definition. For a (finite) alphabet Σ, a Σ-labelled game arena is a tuple
G = (V,E, Vι, vι, µ), where (V,E, Vι, vι) is a game arena, and µ : V → Σ is a labelling
function. Concretely, in this work, the alphabet will be the set of possible valuations
over some finite set of atomic propositions AP , i.e. Σ = 2AP . The propositions in AP
represent the relevant information for the uniformity properties one wants to state. If the
game models interacting systems, this information can be the value of some (Boolean)
variables or some state of communication channels. In games with imperfect information,
it can be the current observation or which action has just been played. µ is extended
naturally to sequences of positions: µ(v1 . . . vn) = µ(v1) . . . µ(vn).

We define the size of a labelled game arena as its number of moves: |G| = |E |.

Plays and paths

In a (labelled or unlabelled) arena, the player owning the initial position vι chooses
a next position v such that vι → v, then it is to the player owning v to choose an
accessible next position, and this process continues for ever, forming an infinite sequence
of positions called a play. Formally, we define the set of (infinite) plays Playsω ⊆ V ω as
the set of infinite words π = v0v1 . . . such that v0 = vι and for each i ≥ 0, vi → vi+1.
We also define the notion of partial play, or finite play : a finite sequence of positions
ρ = v0v1 . . . vn is a partial play if it is the prefix of a play, and we note Plays∗ the set of
partial plays.

Finally, since we will be led to consider sequences of positions that do not start in
the initial position of the arena, we define for each position v the sets Pathsω(v) and
Paths∗(v) of infinite paths and finite paths starting in v just like we defined Playsω and
Plays∗, except that the first position has to be v instead of vι. In particular, Plays∗ =
Paths∗(vι) and Playsω = Pathsω(vι). We also define, for V ′ ⊆ V , Paths∗(V

′) =
∪v∈V ′Paths∗(v) and Pathsω(V ′) = ∪v∈V ′Pathsω(v) as the sets of all finite and infinite
paths starting in V ′. Paths∗ = Paths∗(V ) and Pathsω = Pathsω(V ) are thus the
sets of all possible paths in the arena. For an infinite path π = v0v1 . . . and an integer
i ≥ 0, we use the two following notations: π[i] := vi is the i-th position of the path, and
π[0, i] = v0 . . . vi is the i-th prefix of π; we use similar notation for finite paths.
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Strategies

A strategy for Player i is a partial function σ : Plays∗ → V that maps a finite play
ending in v ∈ Vi to some v′ such that vE v′. A play is said to follow or to be induced
by a strategy for Player i if in this play, every time it is Player i’s turn to play, she
chooses the next position prescribed by the strategy: π ∈ Playsω is induced by σ if for
all j ≥ 0 such that π[j] ∈ Vi, π[j + 1] = σ(π[0, j]). The outcome of a strategy σ, noted
Out(σ) ⊆ Playsω, is the set of all (infinite) plays that are induced by σ.

Strategies as trees

It will often be convenient to see a finite path in a game as a node in a tree, a
strategy as a tree and more generally the set of finite paths as a forest. To make this
correspondence clear, take a finite Σ-labelled game arena G = (V,E, Vι, vι, µ) and a
position v ∈ V . The set Paths∗(v) is a V -tree rooted in v, and we define its natural
labelling ` : x·v′ 7→ µ(v′). This way, for V ′ ⊆ V , Paths∗(V

′) can be seen as a (Σ, V )-forest
that contains one tree per starting position in V ′, and each finite path ρ in Paths∗(V

′) is a
node in the forest; also, observe that its node word is its sequence of labels: w(ρ) = µ(ρ).
In the same fashion, a strategy for Player i can be seen as a subtree of Plays∗ (seen
as a (Σ, V )-tree) obtained by pruning some moves of Player i. Formally, a strategy tree
t = (τ, `) for Player i is a Σ-labelled V -tree with root vι such that for every x ∈ τ , noting
v = last(x), it holds that:

1. if v ∈ Vi then x has a unique child x · v′ with v′ ∈ E (v), and `(x · v′) = µ(v′)

2. if v ∈ V3−i then x has one child x · v′ for each v′ ∈ E (v), and `(x · v′) = µ(v′).

Every strategy σ defines a unique strategy tree that we shall write tσ.

Parity winning condition

A parity game G = (G, C) is a game arena G together with a colouring function
C : V → N with finite codomain, that assigns a colour or priority to each position. A
play π is winning for Player 1 if the least priority of positions seen infinitely often is
even. Otherwise it is winning for Player 2.

Given a parity game G = (G, C), a strategy σ for Player i is a winning strategy if
Player i wins all the plays induced by σ.

2.3. Rational relations

Relations over finite words are often infinite objects, and manipulating them requires
finite representations. Rational languages is a classic example of a class of (potentially)
infinite languages of words that can be finitely represented, and the corresponding notion
concerning relations is rational relations. These relations are recognized by finite state
machines called transducers, which allows to address algorithmic issues involving these
relations. We define finite state transducers and recall basic results concerning rational
relations as well as some subclasses of interest. Much more information concerning these
matters can be found in Berstel (1979).

As in this work we only consider binary rational relations, we will not define trans-
ducers for relations of arbitrary arity but just for binary ones. One way to see such a
transducer is to picture a nondeterministic automaton with two tapes. Given two input
finite words, one on each tape, the automaton reads them according to a set of possible
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transitions, and when it has reached the end of both words, it accepts the pair if it is in
an accepting state. Notice that the transducer in general does not have to progress at
the same pace on both tapes.

Another way to see a transducer which will be useful is to consider that the first tape
is an input tape and the second is an output tape. The transducer reads an input finite
word on its input tape and writes out a finite word on its output tape. This machine
being in general nondeterministic, it may have several outputs for a given input word.

Definition 3. A Finite State Transducer (FST) is a tuple T = (Σ,Γ, Q,∆, qι, QF ), where
Σ is an input alphabet and Γ an output alphabet, Q is a finite set of states, qι ∈ Q is the
initial state, QF ⊆ Q is a set of accepting states, and ∆ ⊆ Q× (Σ ∪ {ε})× (Γ ∪ {ε})×Q
is a finite set of transitions. The transducer is called synchronous if ∆ ⊆ Q×Σ×Γ×Q.

Intuitively, (q, a, b, q′) ∈ ∆ means that the transducer can move from state q to state
q′ by reading a and writing b (both possibly ε, except for synchronous transducers).

We also define the extended transition relation ∆∗ ⊆ Q× Σ∗ × Γ∗ ×Q, which is the
smallest relation such that:

• for all q ∈ Q, (q, ε, ε, q) ∈ ∆∗, and

• if (q, w,w′, q′) ∈ ∆∗ and (q′, a, b, q′′) ∈ ∆, then (q, w · a,w′ · b, q′′) ∈ ∆∗.

For q, q′ ∈ Q, w ∈ Σ∗ and w′ ∈ Γ∗, the notation q −[w/w′]→ q′ means that
(q, w,w′, q′) ∈ ∆∗. The relation recognized by T is:

[T ] := {(w,w′) | w ∈ Σ∗, w′ ∈ Γ∗,∃q ∈ QF , qι −[w/w′]→ q}.

In other words, a pair (w,w′) is in the relation recognized by T if there is an accepting
execution of T that reads w and writes w′.

Definition 4 (Rational relations). Let Σ and Γ be two alphabets. A binary relation
; ⊆ Σ∗ × Γ∗ is rational if there is a finite state transducer T such that [T ] = ;. A
binary relation is regular if it can be recognized by a synchronous transducer. 2

Rat and Reg are respectively the set of rational relations and the set of regular
relations. We will often consider transducers that have the same alphabet Σ for input
and output, and in this case we shall just talk about transducers over Σ and omit the
output alphabet in the description of the transducer. The size of a transducer T =
(Σ,Γ, Q,∆, qι, QF ) is its number of transitions: |T | = |∆|.

Definition 5 (Recognizable relations). Let Σ and Γ be two alphabets. A binary re-
lation ; ⊆ Σ∗ × Γ∗ is recognizable if there are two finite families of regular languages

L1, . . . ,Ln ⊆ Σ∗ and L′1, . . . ,L′n ⊆ Γ∗ such that ; =
n⋃
i=1

Li × L′i.

We note Rec the set of recognizable relations. The following inclusions are well known
(Frougny and Sakarovitch, 1993): Rec ( Reg ( Rat.

2These are normally theorems, the real definitions are in terms of rational and regular subsets of
the monoid Σ∗ × Γ∗. We choose to take these definitions instead as we are not interested in algebraic
considerations.
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3. Uniform strategies

In this section we first define the logic L;, which can be seen as a generalization of
logics of knowledge and branching time, with arbitrary relations between nodes of trees
and two different semantics for the “knowledge-like” quantifiers. We then define our
notion of uniform strategies, where the uniformity constraints are expressed in this logic.

3.1. The logic L;

Because we believe the logical approach to be intuitive and well suited for automation,
we choose to represent uniformity requirements by means of a logical language, that we
call L;. In order to talk about the dynamics of strategy trees, L; contains the classic
operators of the full branching time logic CTL∗, and as for CTL∗ a state formula is
interpreted in a node of a labelled tree. The logic also contains quantifiers ; and ; ,
that universally quantify over “related” nodes of labelled trees (representing paths in a
game arena). The semantics of L; is therefore parameterized by a binary relation ;
between nodes of trees.

The difference between the two quantifiers ; and ; lies in the domain over which
they range. Sometimes one wants to quantify only over those related paths that are inside
the strategy under consideration. This is the role of ;, called the strict quantifier. On
the other hand it is sometimes natural to consider related paths that are not generated
by the strategy, and that do not even start in the initial position of the game. This
is achieved by ; , called the full quantifier; its semantics is parameterized by a forest
of labelled trees called the universe, and it quantifies over all ;-related nodes in this
universe. We now present the syntax and semantics of L;. In the remaining of this
work, AP will always be a finite set of atomic propositions.

Note that in Maubert and Pinchinat (2014) the logical language basis was LTL. We
choose here to extend it to the full branching time logic CTL∗ as it is clearly more
expressive (for example we can specify CTL∗ winning conditions and capture module
checking (Kupferman and Vardi, 1997)), it is also more natural as we see strategies as
trees, and furthermore our decidability and complexity results are identical.

Syntax

The set of well-formed L; formulas is given by the following grammar:

State formulas: ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Aψ | ;ϕ | ;ϕ

Path formulas: ψ ::= ϕ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ,

where p ∈ AP . Classically, we define true as p ∨ ¬p, false as ¬true, and we define
the Boolean conjunction ∧ for both types of formulas. Also, for each path formula ψ,
we write Eψ for the state formula ¬A¬ψ, Fψ for trueUψ, Gψ for ¬F¬ψ and for each
state formula ϕ, we write ;ϕ for ¬;¬ϕ and ; ϕ for ¬ ;¬ϕ.

For a formula ϕ ∈ L;, we define its size |ϕ| as the number of symbols it contains,
and Sub(ϕ) as the set of subformulas of ϕ.

8



Semantics

Let Υ be a finite set of directions, and let Σ = 2AP be the set of possible valuations
(for some finite set AP of atomic propositions). As we said, like for CTL∗, an L; state
formula (resp. path formula) is interpreted in a node (resp. branch) of a Σ-labelled
Υ-tree, but the semantics is parameterized by, first, a binary relation ; between finite
words over Σ, and second, a forest of Σ-labelled Υ-trees.

Let ; be a binary relation over Σ∗ and U be a (Σ,Υ)-forest. For two nodes x, y ∈ U
we let x ; y denote that w(x) ; w(y) (that is their node words are related by ;).

Given a (Σ,Υ)-tree t = (τ, `), we define the semantics of L; as follows, where x ∈ τ
is a node and λ is a branch in τ . t, x |= ϕ means that the L; state formula ϕ holds at
the node x of the labelled tree t, and t, λ |= ψ means that the L; path formula ψ holds
on the branch λ of t. Rigorously we should write ;,U , t, x |= ϕ but since the relation
and the universe will always be clear from the context we may omit them.

t, x |= p if p ∈ `(x)

t, x |= ¬ϕ if t, x 6|= ϕ

t, x |= ϕ1 ∨ ϕ2 if t, x |= ϕ1 or t, x |= ϕ2

t, x |= Aψ if for all λ ∈ Branches(x), t, λ |= ψ

t, x |= ;ϕ if for all y ∈ t such that x ; y, t, y |= ϕ

t, x |= ;ϕ if for all y ∈ U such that x ; y, Uy, y |= ϕ 3

t, λ |= ϕ if t, λ[0] |= ϕ

t, λ |= ¬ψ if t, λ 6|= ψ

t, λ |= ψ1 ∨ ψ2 if t, λ |= ψ1 or t, λ |= ψ2

t, λ |= Xψ if t, λ1 |= ψ

t, λ |= ψ1Uψ2 if there exists i ≥ 0 such that t, λi |= ψ2 and
for all 0 ≤ j < i, t, λj |= ψ1

We shall use the notation t |= ϕ for t, r |= ϕ, where r is the root of t. In particular,
t |= Aψ if every branch of t that starts at the root satisfies ψ. Also, for a 2AP -labelled
game arena G = (V,E, Vι, vι, µ), a position v ∈ V and a state formula ϕ ∈ CTL∗, v |= ϕ
classically means Paths∗(v) |= ϕ.

3.2. Uniform strategies

Let G = (V,E, Vι, vι, µ) be a finite 2AP -labelled game arena for some finite set AP .
Let us note Σ = 2AP , and let ; be a binary relation over Σ∗. Finally let ϕ be an L;
formula. The universe, i.e. the range of the full quantifier, is determined by the set Vι
of possible starting positions. We let U be the (Σ, V )-forest of all paths in the arena
starting from a position in Vι: U = Paths∗(Vι).

Definition 6 (Uniform strategies). A strategy σ is (;, ϕ)-uniform if the strategy tree
of σ satisfies ϕ, i.e. tσ |= ϕ.

In the following section we give two examples of relevant problems that are naturally
expressed by means of uniform strategies.

3Recall that Uy is the tree in U that contains y (see Definition 2).
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4. Examples of uniform strategies

The first example describes how the strict quantifier enables us to capture the notion
of observation-based strategy in games with imperfect information. The second example,
relying on a notion of opacity in games, illustrates the usefulness of the full quantifier
to characterize winning strategies when the winning condition involves the knowledge of
the opponent.

4.1. Games with imperfect information

We first define in our setting a classic formalism of two-player turn-based games
with imperfect information. We show that the standard notion of “uniform strategy” or
“observation-based strategy” in these games, and hence the essence of imperfect infor-
mation, is a quite simple instance of our general notion of uniform strategy. This is true
no matter which assumptions are made on the player’s observational power.

We consider the framework of two-player imperfect-information games studied for
example in Reif (1984); Chatterjee et al. (2006); Berwanger and Doyen (2008). In these
games, Player 1 only partially observes the positions of the game, such that some positions
are indistinguishable to her, while Player 2 has perfect information (the asymmetry is
due to the fact that we consider all possible outcomes of a strategy, and to the focus being
on the existence of strategies for Player 1). Arenas are directed graphs with actions on
edges. The game is played in rounds: in each round, if the position is a node v, Player 1
chooses an available action a, and Player 2 chooses a next position v′ reachable from v
through an a-edge.

We reformulate this framework in a way that fits our definition of game arenas by
putting Player 1’s actions inside the positions. Intuitively, in a position v, Player 1
choosing an action a is simulated by a move to position (v, a), after what Player 2
chooses a position v′ reachable from v through a.

Formally, we define an imperfect-information game arena as a structure Gimp =
(G, obs) where G = (V,E , {vι}, vι, µ) is a labelled perfect-information game arena where
positions of the two players are of a different nature: there is a finite set Act of actions
such that V2 = V1 × Act. So positions in V1 are of the form v while positions in V2

are of the form (v, a). The additional component obs : V1 → Obs is an observation
function mapping positions of Player 1 to a finite set Obs of observations. For a position
(v, a) ∈ V2, we let (v, a).act := a denote the action it contains. The players must play
in turns: E ⊆ V1 × V2 ∪ V2 × V1. Also, because a move of Player 1 represents her
choosing an action and not changing of position, we add the following requirement that
vE (v′, a) implies v = v′; and because a game starts with Player 1 choosing an action,
the initial position vι is in V1. We add the classic requirement that the same actions
must be available in indistinguishable positions: for all v, v′ ∈ V1, if obs(v) = obs(v′)
then vE (v, a) if and only if v′ E (v′, a). This reflects the assumption that a player is able
to distinguish positions with different alternatives of actions.

Also, we assume that AP contains a proposition pa for each action a ∈ Act and
a proposition po for each observation o ∈ Obs, and we also assume that it contains a
special proposition p1 that marks positions of Player 1: µ(v) = {p1, pobs(v)} for v ∈ V1

and µ(v, a) = {pa} for (v, a) ∈ V2.
We now define the observational equivalence relation on finite plays ≈. This relation

depends on Player 1’s assumed capacities. Following a classic approach (e.g. Reif (1984);
10



Chatterjee et al. (2006); Berwanger and Doyen (2008)), we suppose that Player 1 has
perfect recall, meaning that she remembers the whole sequence of observations she makes
during a play. We also assume that she remembers her own actions. This leads to the
following definition: we first extend the observation function to finite plays, by letting

obs(v0(v0, a1)v1 . . . (vn−1, an)) := obs(v0)a1obs(v1) . . . an and
obs(v0(v0, a1)v1 . . . (vn−1, an)vn) := obs(v0)a1obs(v1) . . . anobs(vn),

and two plays are observationally equivalent if they have the same observation:

for ρ, ρ′ ∈ Plays∗, ρ ≈ ρ′ if obs(ρ) = obs(ρ′).

Observe that if ρ ≈ ρ′ and ρ ends in V1, then so does ρ′.

Definition 7. A strategy σ for Player 1 is observation-based if for all finite plays ρ, ρ′

that follow σ and end in V1, if ρ ≈ ρ′ then σ(ρ).act = σ(ρ′).act.

Remark 1. While the classic definition of observation-based strategies considers all pairs
of observationally equivalent finite plays, we restrict attention to plays that follow the
strategy. The reason why we can afford to do so is that the way a strategy is defined on
finite plays that do not follow this strategy is irrelevant to its outcome. Therefore, if a
strategy is observation-based in our sense, it can be turned into a strategy that has the
same outcome and is observation-based according to the classic definition.

Observation-based strategies as uniform strategies

First, let us define the L; formula

SameAct := AG(p1 →
∨

a∈Act

;EXpa),

which holds of a strategy of Player 1 if whenever it is Player 1’s turn to play, some action
a is chosen by the strategy in all related finite plays.

It remains to define the binary relation ; over (2AP )∗ that relates observationally
equivalent plays. Note that the projection of the node word w(ρ) on 2AP\{p1} is exactly
obs(ρ), thence two plays are observationally equivalent if, and only if, their node words
are identical. Writing Id for the identity relation over (2AP )∗, we obtain the following
result.

Proposition 1. A strategy σ for Player 1 is observation-based if, and only if, it is
(Id, SameAct)-uniform.

Note first that formula SameAct does not involve any full quantifier, so that the
set of possible starting positions Vι (only used to define the range of full quantifiers)
is indifferent here. Now to understand why it is the strict quantifier that we need in
SameAct, consider Figure 1, which represents the (first levels of) the unraveling of some
imperfect-information arena with two actions, a and b. Circles represent positions of
Player 1, squares positions of Player 2, and each position contains its propositional
valuation, except for those propositions representing observations, rather represented
with colours: Player 1 confuses positions v1 and v2, as well as positions v3 and v4.
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p1

pa

p1

pa pb

p1

pa pb

pb

p1

pa pb

p1

pa pb

AXpbAXpb

vι

v1 v2 v3 v4

Figure 1: An example of strategy in an imperfect-information arena.

Finally, blue arrows represent the observational equivalence relation ≈ (self loops are
omitted). Let x1 (resp. x2) be the node ending in v1 (resp. v2), and note that x1 ≈ x2.

The yellow subtree is a strategy tree of Player 1 on which we evaluate SameAct. Since
this strategy is not observation-based – it plays different actions in x1 and x2 – it should
not verify SameAct. Therefore, because x1 is a node of the strategy that verifies p1,
for each action c ∈ {a, b}, ;EXpc should not hold in this node. And indeed the only
successor of x1 in the strategy tree is labelled by pa while the only successor of x2 in the
strategy tree is labelled by pb. If we replaced in SameAct the strict quantifier by the full
one, according to the semantics of ; nodes v1 and v2 would be seen as nodes of the full
tree unfolding of the arena, and as such both have two successors, one with pa and one
with pb, which makes sure that the formula holds. In fact, by using the full quantifier
we would lose track of the strategy under evaluation, and the formula would be true of
any strategy.

In this example we assume that Player 1 has perfect recall, and that she can observe
her own actions, which determines the definition of ≈. It is easy to see that we may
capture the same notion of observation-based strategy for any other assumptions on
the player’s capacities (like asynchronicity, imperfect recall. . . ), by simply replacing the
identity relation Id in Proposition 1 with an appropriate one.

4.2. Games with opacity condition

We have seen with the previous example that as soon as the desired property only
concerns plays that follow the strategy, the appropriate quantifier is the strict one. Games
with opacity condition, as studied in Maubert et al. (2011), give an example of a problem
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that intrinsically requires the full quantifier. They also illustrate that the notion of
uniform strategies enables us to express winning conditions with epistemic features.

Games with opacity condition are based on two-player imperfect-information are-
nas with a particular winning condition, called the opacity condition, that involves the
knowledge of the player who has imperfect information. In such games, some positions
are “secret”, in the sense that they reveal some critical information. The player who
has imperfect information (Attacker) aims at obtaining the certainty that the current
position is a secret one, while her opponent (Defender) wants to prevent Attacker from
obtaining this certainty.

Assume that some proposition pS ∈ AP is dedicated to the marking of secret po-
sitions. Let Gimp = (G = (V,E, Vι, vι, µ), obs) be an imperfect-information arena (as
defined in Section 4.1), with a distinguished set of positions S ⊆ V1 that denotes the
secret, and such that µ−1({pS}) = S (positions labeled by pS are exactly positions in S).
We define the observational equivalence relation ≈ as in Section 4.1.

After a finite play ρ, the knowledge or information set I(ρ) of Attacker is the set of
positions that she considers possible according to the observation she has of ρ. Formally,
for each play ρ ∈ Plays∗ such that last(ρ) ∈ V1, we let

I(ρ) := {last(ρ′) | ρ′ ∈ Plays∗, ρ ≈ ρ′}.

Here it is assumed that Attacker knows the initial position. For this reason, we let
Vι = {vι}, and in the definition of information sets, only equivalent plays are considered,
instead of all equivalent paths in the arena. We could consider instead that Attacker has
incomplete information and does not know the exact initial position; to do so we would
just define Vι and information sets differently.

An infinite play π is winning for Defender if Attacker never knows the secret. More
formally, Defender wins play π if for every finite prefix ρ of π, not all the positions
considered possible by Attacker after ρ are in the secret, i.e. I(ρ) * S.

We define the formula

NeverKnowsS := AG¬ ;pS ,

which says that in all plays, Attacker never knows the secret. Again, letting Id be the
identity relation over (2AP )∗, it can easily be shown that:

Proposition 2. A strategy for Defender is winning iff it is (Id, NeverKnowsS)-uniform.

We give an intuitive explanation of why the full quantifier is the correct one here.
According to the definition of Attacker’s information sets, she considers that all obser-
vationally equivalent plays are possible, even those that are not induced by Defender’s
strategy. In other words, given a tree representing a strategy for Defender, evaluating
whether Attacker knows the secret in some node requires to consider equivalent nodes
outside the strategy tree, which is precisely what the full quantifier achieves. Notice
that, intuitively, this definition of Attacker’s knowledge implies that she “ignores” De-
fender’s strategy. This assumption is natural in this precise setting, and corresponds to
the fact that the imperfect information arises from the Attacker not seeing exactly which
positions are chosen by Defender.
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5. Strictly-uniform strategies

In this section, we investigate the problem of deciding the existence of a strictly-
uniform strategy, i.e. a uniform strategy for some uniformity property that uses only
strict quantifiers. Since the input of the problem must be finite, we choose to consider
the rich class of rational relations, representable by finite state transducers.

Let SL; be the language of strict uniformity constraints, i.e. the sublanguage of L;
where the full quantifier ( ; ) is not allowed. We consider the following decision problem4:

Definition 8.

SUS :=

 G is a finite 2AP -labelled arena, T is a transducer over 2AP ,
(G, T,Φ) Φ ∈ SL;, and there exists a

([T ],Φ)-uniform strategy for Player 1 in G.


We first show that SUS in undecidable. Then, in an attempt to understand the

inherent difficulty of the problem, we introduce the notion of jumping tree automata
that generalize alternating tree automata by allowing jumps between nodes of different
branches in the input tree. The jumps “implement” the ; quantifiers, and we prove
that the satisfiability problem for SL; reduces to the non-emptiness of jumping tree
automata. It is then easy to see that SUS also reduces to the non-emptiness of these
automata, by taking the product of an automaton that accepts trees representing strate-
gies in arena G with the jumping automaton – equipped with relation [T ] – that accepts
models of the formula Φ. We establish that for recognizable relations, jumping tree au-
tomata can be transformed into equivalent two-way tree automata, whose non-emptiness
problem is decidable in Exptime (Vardi, 1998). This yields decidability and a tight
2-Exptime upper bound complexity for SUS with recognizable relations.

5.1. Undecidability for rational relations

It can be proven, by reduction of the Post Correspondence Problem, that SUS is
undecidable, but we propose here the stronger result.

Theorem 1. The strictly-uniform strategy problem is undecidable for the class of regular
equivalence relations.

Because the class of rational relations contains the class of regular equivalence rela-
tions, undecidability of SUS follows.

Corollary 1. SUS is undecidable.

The rest of this section is dedicated to the proof of Theorem 1.
We reduce the distributed strategy problem for three-player games with safety objec-

tives, as addressed by Peterson et al. (2001); Berwanger and Kaiser (2010). We present
the problem as stated in Berwanger and Kaiser (2010), in which two players with im-
perfect information (Player A and Player B) play against nature (the third player). Let
ActA (resp. ActB) be a finite set of available actions for Player A (resp. Player B), and

4We use Φ for the input formula, and ϕ for subformulas.
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ObsA (resp. ObsB) be a finite set of observations for Player A (resp. Player B). We
assume that ActA and ActB are disjoint and we write Act = ActA ×ActB .

A finite three player imperfect-information game with safety objective is a tuple
Gimp3 = (V,E, vι, oA, oB). V is a finite set of positions with a designated subset Bad ⊆ V
of “bad” positions that Player A and Player B should avoid. E ⊆ V × Act × V is
a set of transitions and oX : V → ObsX is an observation function (X ∈ {A,B}).
In each round, Player X chooses an action cX ∈ ActX , which gives an action profile
x = (cA, cB), and nature chooses a next position in E (v, x) = {v′ | (v, x, v′) ∈ E }.
We suppose that all actions are allowed in every position: for all v ∈ V , a ∈ ActA and
b ∈ ActB , we have E (v, (a, b)) 6= ∅. The observation functions are extended to finite plays
ρ = v0x0v1 . . . xn−1vn by letting oX(ρ) = oX(v0)oX(v1) . . . oX(vn). Note that actions are
not observed.

A strategy for Player X is a partial mapping σX : (V ·Act)∗ ·V → ActX that assigns
an action to each finite play. It must be observation-based: for any finite plays ρ and ρ′

such that oX(ρ) = oX(ρ′), σX(ρ) = σX(ρ′). A distributed strategy is a pair (σA, σB) of
strategies for Player A and Player B. The outcome of a distributed strategy is the set of
infinite plays that are both induced by σA and σB , and a distributed strategy is winning
if no play in the outcome ever visits a position in Bad.

It is well known (Peterson et al., 2001; Berwanger and Kaiser, 2010) that the following
problem is undecidable : given a safety imperfect-information game, does there exist a
winning distributed strategy?

We explain how to reduce it to SUS. We fix an imperfect-information arena Gimp3 =
(V,E, vι, oA, oB) with observations ObsA and ObsB and bad states Bad, and we build a
labelled game arena G = (V ′,E ′, V ′ι , v

′
ι, µ) in which Player 1 plays for both Player A and

Player B, and Player 2 plays for nature. Figure 2 shows how each transition in Gimp3 is
transformed into a widget in G.

v v′
a, b

v
a

pa

a

b
pb

v′

pbad

Figure 2: Encoding in G a transition (v, (a, b), v′) of Gimp
3 , with v′ ∈ Bad. Colours represent the

observations of Player A and Player B.

The set of positions V ′ = V A1 ] V B1 ] V2 is split into three: in positions of V A1 = V ,
Player 1 simulates moves of Player A, in positions of V B1 = V ×ActA, Player 1 simulates
moves of Player B, and in positions of V2 = V ×ActA ×ActB , Player 2 simulates moves
of nature. Hence for all v, v′, a, b, we have (v, (v, a)) ∈ E , ((v, a), (v, a, b)) ∈ E , and if
(v, (a, b), v′) ∈ E then ((v, a, b), v′) ∈ E . For each action c ∈ ActX , pc labels positions
in which the last move was Player 1 simulating the choice of action c by Player X. In
addition, “bad” positions are marked with proposition pbad. Formally, we consider the set
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of atomic propositions {pc | c ∈ ActA∪ActB}∪{pbad}, and we label the arena as follows:
if v ∈ Bad, then µ(v) = {pbad}, µ(v, a) = {pa, pbad} and µ(v, a, b) = {pb, pbad}; otherwise,
µ(v) = ∅, µ(v, a) = {pa} and µ(v, a, b) = {pb}. We let v′ι = vι, and because players are
assumed to know the initial position, we let V ′ι = {v′ι}. Finally the observation functions
are defined on this new arena as follows: for a finite play ρ = v0(v0, a0)(v0, a0, b0)v1 . . .,
we note oX(ρ) = oX(v0)oX(v1) . . .

Clearly, since Player 1 plays for the coalition {A,B}, we expect each branch of her
strategy to satisfy the following path formula:

ψSafe := G¬pbad

We want to enforce that when Player 1 simulates a move of Player X, her choice is
only based on Player X’s observation. To do so, we define the symmetric and transitive
relation ; over V ′∗ that relates two sequences of positions if they end in positions
belonging to the same player, and are observationally equivalent for this player:

; :=

{
(ρ, ρ′)

last(ρ) ∈ V A1 and last(ρ′) ∈ V A1 and oA(ρ) = oA(ρ′), or
last(ρ) ∈ V B1 and last(ρ′) ∈ V B1 and oB(ρ) = oB(ρ′)

}
Note that for the sake of clarity we defined ; on V ∗ instead of (2AP )

∗
, but by

labelling each position v with an atomic proposition pv and working with the alphabet
Σ = {{pv} ∪ µ(v) | v ∈ V }, one can rephrase relation ; as a binary relation over Σ∗.

The following path formula states that whenever Player 1 simulates a move of PlayerX,
she chooses the same action in all plays observationally equivalent for Player X:

ψObs := G
∧

c∈ActA∪ActB

Xpc → ;EXpc

We get the following reduction:

Lemma 1. There is a winning distributed strategy in Gimp3 if, and only if, there is a
(;,A(ψObs ∧ ψSafe))-uniform strategy for Player 1 in G.

We show that ; is regular. Consider the synchronous transducer TA,B of Figure 3.
State qι is the initial state (ingoing arrow), qA1 and qB2 are final states (doubly circled).
Transducer TA,B works as follows: before reading a word w, the transducer guesses
whether we are interested in Player A or Player B’s observation. In the first case it goes to
the left, reads w and writes a word w′ observationally equivalent for Player A (remember
that actions are not observed). The pair (w,w′) is accepted if w (and w′) indeed ends in
a position where it is Player A’s turn to play. The second case is symmetric. Note that
; is not reflexive – words ending in V2 are related to no word – but its reflexive closure
∼ is also regular (plug in TA,B the synchronous transducer for the identity relation).
Lemma 1 would also hold for ∼, which concludes the proof of Theorem 1.

5.2. Intermezzo: jumping tree automata

Let Υ be a finite set of directions. We recall the notions of alternating tree automata
and two-way tree automata on Υ-trees, and we define jumping tree automata (JTA),
all with parity acceptance condition. For an introduction to the theory of automata on
infinite trees see Thomas (1990) or Löding (2014).
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qι

qA1

qA2qA3

qB1

qB2qB3

with oA(v) = oA(v′) with oB(v) = oB(v′)

v/v′ v/v′

(v, a)/(v′, a′)

(v, a, b)/(v′, a′, b′)

v/v′ (v, a)/(v′, a′)

(v, a, b)/(v′, a′, b′)

v/v′

Figure 3: The synchronous transducer TA,B .

For a set X, B+(X) is the set of positive boolean formulas over X, i.e. formulas built
with elements of X as atomic propositions and using only connectives ∨ and ∧. As usual,
we also allow for formulas true and false, and ∧ has precedence over ∨. Elements
of B+(X) are denoted by α, β . . . Let Dir ⊆ Υ ∪ {ε, ↑, ; , ;} be a set of transition
directions. A Dir -automaton is a tuple A = (Σ, Q, δ, qι, C) where Σ is a finite alphabet,
Q a finite set of states, qι ∈ Q an initial state, C : Q → N a colouring function, and
δ : Q × Σ → B+(Dir × Q) a transition function. If Dir contains ; or ; then we
additionally require the automaton to be equipped with a binary relation ; over Σ∗.
We note Dir↑ = Υ ∪ {ε, ↑} and Dir; = Υ ∪ { ; , ;}. Finally, we define the size of a
Dir automaton A = (Σ, Q, δ, qι, C) as the sum of the sizes of formulas in its transition
function: |A| =

∑
q∈Q

∑
a∈Σ

|δ(q, a)|.

Definition 9. Υ-automata are alternating tree automata, Dir↑-automata are two-way
tree automata, and Dir;-automata are jumping tree automata (JTA).

Most of the time in this section, identifying the precise child of the current node in
which an automaton must send a copy of itself is unnecessary, and specifying instead
that it must send a copy in at least one child or in all children is enough. Therefore,
for the sake of readability, we replace the set of directions Υ with the set of abstract
directions {3,�} as in alternating automata on graphs (Bojanczyk, 2002; Piterman and
Vardi, 2004). [3, q] can be seen as a macro for

∨
d∈Υ[d, q], and similarly [�, q] stands for∧

d∈Υ[d, q]. Note however that the results we establish in this section also hold in the
more general case where concrete directions are allowed.

Following a classic approach (Muller and Schupp, 1987; Löding, 2014), acceptance of
a (Σ,Υ)-tree t = (τ, `) in a designated node xι ∈ τ by a Dir -automaton A is defined on a
two-player game between Eve (the proponent) and Adam (the opponent). Let t = (τ, `)
be a (Σ,Υ)-tree, xι ∈ τ , and A = (Σ, Q, δ, qι, C) be a Dir -automaton for some set of
transition directions Dir . We define the parity game GxιA,t = (V,E, vι, C

′): the set of

positions is V = τ × Q × B+(Dir × Q), the initial position is (xι, qι, δ(qι, `(xι))), and a
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position (x, q, α) belongs to Eve if α is of the form α1 ∨ α2, [3, q′] or [ ; , q′]; otherwise
it belongs to Adam. Moves in GxιA,t are defined by Rules (1a)-(1e); for clarity we shall
abuse notations, and for a node x of t and a state q of A we write δ(q, x) for δ(q, `(x)).

(x, q, α1 † α2)→ (x, q, αi) where † ∈ {∨,∧} and i ∈ {1, 2} (1a)

(x, q, [#, q′])→ (y, q′, δ(q′, y)) where # ∈ {3,�} and y is a child of x (1b)

(x, q, [ε, q′])→ (x, q′, δ(q′, x)) (1c)

(x, q, [↑, q′])→ (y, q′, δ(q′, y)) where y is x’s parent (1d)

(x, q, [ ;, q′])→ (y, q′, δ(q′, y)) where ; ∈ { ; , ;} and x ; y (1e)

Positions of the form (x, q, true) and (x, q, false) are sink positions, winning for Eve
and Adam respectively. Positions of the form (r, q, [↑, q′]) where r is the root are also sink
positions as the root of a tree has no parent; they are wining for Adam. The colouring
is inherited from the one of the automaton: C ′(x, q, α) = C(q), except for sink positions,
which are assigned an even (resp. odd) priority if they are winning for Eve (resp. Adam).

Most of the time the starting node xι will be the root r of the tree, and in this case
we simply write GA,t instead of GrA,t. A tree t is accepted by A if Eve has a winning
strategy in GA,t, and we denote by L(A) the set of trees accepted by A.

We first prove that, just like alternating automata, the class of JTA is closed by
complementation. To this aim, for a formula α ∈ B+(Dir;×Q) we define its dualization

α̃ by induction as follows: t̃rue = false, f̃alse = true, α̃ ∨ β = α̃ ∧ β̃, α̃ ∧ β = α̃ ∨ β̃,

[̃3, q] = [�, q], [̃�, q] = [3, q], and, as expected, [̃ ; , q] = [ ;, q] and [̃ ;, q] = [ ; , q].

Definition 10. Let A = (Σ, Q, δ, qι, C) be a jumping tree automaton. We define the

complement of A by Ã = (Σ, Q, δ̃, qι, C̃), where C̃(q) = C(q) + 1, and δ̃(q, a) = δ̃(q, a).

Lemma 2. Eve wins Gxι
Ã,t

if, and only if, Eve loses GxιA,t.

Proof. The arenas of both games are isomorphic, and if a position belongs to Eve in GxιA,t
then its counterpart in Gxι

Ã,t
belongs to Adam, and vice versa. Also, a play is winning for

a player in one game if and only if its counterpart in the other game is winning for the
opponent. From this we have that a winning strategy for a player in one game gives a
winning strategy for its opponent in the other, and because parity games are determined
(Zielonka, 1998), the result follows.

We now establish that JTA capture SL;.

Proposition 3. Let ϕ be an SL; formula, and let ; be a binary relation over (2AP )∗.
There exists a jumping tree automaton Aϕ equipped with ; and of size 2O(|ϕ|) such that
t ∈ L(Aϕ) if, and only if, t |= ϕ.

Proof. The construction is a simple adaptation of Kupferman et al. (2000), that in-
ductively builds an alternating tree automaton for a CTL∗ formula. We only give the
inductive case ϕ = ;ϕ′.

If ϕ = ;ϕ′, with ϕ′ a state formula, let Aϕ′ = (Σ, Q, δ′, q′ι, C) be the jumping
automaton associated to ϕ′. We define Aϕ = (Σ, Q ∪ {qι}, δ, qι, C), where qι /∈ Q,
δ(q, a) = δ′(q, a) if q ∈ Q, and δ(qι, a) = [ ;, q′ι].
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We prove that JTA are adequate machines for the decision problem SUS:

Proposition 4. Let (G, T,Φ) be an instance of SUS. There is a jumping tree automaton
A equipped with [T ] such that σ is a ([T ],Φ)-uniform strategy if, and only if, tσ ∈ L(A).
Moreover, A can be chosen of size |A| = |G|2 + 2O(|Φ|).

Proof. One builds from G a nondeterministic tree automaton AG (using concrete transi-
tion directions Dir = V ) that accepts the set of strategy trees for Player 1 in G. AG is of
size at most |G|2. Then, by Proposition 3, one can build a JTA Aϕ equipped with [T ] that
accepts the 2AP -labelled V -trees that verify Φ. This automaton is of size |AΦ| = 2O(|Φ|).
Because JTA are trivially closed by language intersection, one can build in time linear in
the sizes of AG and AΦ a JTA that accepts precisely the strategy trees that verify Φ.

The following is a direct consequence of Theorem 1 and Proposition 4.

Corollary 2. The emptiness problem for jumping tree automata with regular equivalence
relations is undecidable.

5.3. The special case of recognizable relations

We have seen that SUS is undecidable for regular relations (Theorem 1). We establish
that when restricted to recognizable relations the problem becomes decidable and, more
precisely, 2-Exptime-complete. To achieve this result we prove that JTA equipped
with recognizable relations can be effectively transformed into equivalent two-way tree
automata of linear size; this implies that the emptiness problem for JTA with recognizable
relations is decidable in exponential time.

We gave in Section 2.3 the definition of recognizable relations, we now give a useful
characterization in terms of regular finite word languages. While in general transducers
that recognize rational or regular binary relations have to parse the two input words
in parallel, a recognizable relation can be recognized by a finite word automaton that
starts by reading entirely the first word (or its mirror), and then the second one, before
deciding whether these two words are related or not.

Proposition 5 (Carton et al. (2006)). A relation ; ⊆ Σ∗ × Γ∗ is recognizable if, and
only if, the language {u#v | u ; v} is regular (accepted by a finite word automaton),
where # /∈ Σ ∪ Γ is a fresh symbol.

Given a recognizable relation ;, we write B; = (Σ ∪ {#}, Q;, δ;, sι, F;) for the
minimal deterministic word automaton of the language {u#v | u ; v} (Proposition 5),
with standard interpretation of the components of B;.

Remark 2. In games with imperfect information, a strategy is called information-based
if it assigns the same move to finite plays that share the same information set. This is a
stronger constraint than being observation-based as two plays can have different observa-
tions and still yield the same information set. However it is well known (Berwanger et al.,
2010) that in two-player turn-based games with imperfect information equipped, for ex-
ample, with parity winning conditions, there is a winning observation-based strategy for
a player if, and only if, she has a winning information-based strategy, which is usually
proved by reduction to a powerset perfect-information game. This result implies that
in these games, looking for an information-based strategy is sufficient; interestingly, the
binary relation involved to represent information-based strategies as uniform strategies
is recognizable, and the powerset arena gives a finite word automaton that recognizes it.
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Proposition 6. If A is a jumping tree automaton equipped with a recognizable relation
;, then there is a two-way tree automaton Â of size O(|A|·|B;|) such that L(A) = L(Â).

Proof sketch. When JTA A goes down along a branch of a tree, Â behaves likewise. The
critical points are the jump instructions of A, say in a node x of the tree. At this point,
Â stops behaving like A and enters a jump mode that simulates this jump: Â triggers
automaton B; and goes up to the root while running B; on the reversed branch. When
reaching the root, B; has read w(x), the mirror of the node word of x, and Â feeds

B; with the # symbol. Then Â goes down along some or all (depending on the jump:
respectively existential or universal) branch(es) of the tree while still running B;. Each
time B; reaches a final state in a node y, it has read w(x)#w(y), and by Proposition 5 it
means that x ; y; the automaton then (existentially or universally) chooses to continue

or to exit the jump mode, in which case Â resumes the simulation of A. �

From Proposition 6 follows directly

Corollary 3. The non-emptiness problem for jumping tree automata with recognizable
relations is decidable in time exponential in the size of the jumping automaton and of the
word automaton recognizing the relation.

Proof. This is a direct consequence of Proposition 6 along with the Exptime complexity
of the non-emptiness problem for two-way tree automata Vardi (1998).

Finally, combining Proposition 4 with Corollary 3 proves that the strictly uniform
problem for recognizable relations is decidable. We define this problem formally.

SUSRec :=

 G is a finite 2AP -labelled arena, Φ ∈ SL;,
(G,B;,Φ) ; is a recognizable relation over 2AP , and there exists a

(;,Φ)-uniform strategy for Player 1 in G.


The size of an instance (G,B;,Φ) of SUSRec is the sum of the sizes of its components,
plus the number of atomic propositions used: |(G,B;,Φ)| = |G|+ |B;|+ |Φ|+ |AP |.

Theorem 2. SUSRec is 2-Exptime-complete.

Proof sketch. Let (G,B;,Φ) be an instance of SUSRec. By Proposition 3, there is a
JTA A of size 2O(|Φ|)), equipped with relation ;, whose language is the set of trees that

verify Φ. By Proposition 6, one can build an equivalent two-way tree automaton Â of size
O(|A|·|B;|). By Vardi (1998), there is an equivalent nondeterministic tree automatonAn

with 2poly(|Â|) = 2poly(|A|·|B;|) = 2poly(2O(|Φ|)·|B;|) states and an acceptance condition of
size O(|Â|) = O(|A| · |B;|) = O(2O(|Φ|) · |B;|). From G, one builds a nondeterministic
tree automaton AG with O(|G|) states that accepts strategy trees for Player 1 in G. The
final step is to test the emptiness of the product An×AG . Because checking for emptiness
of a nondeterministic parity tree automaton over alphabet Σ with n states and c colors
on d-ary trees can be done in time (|Σ| ·nO(d))O(c), and because here Σ = 2AP , we obtain

a decision procedure that runs in time (|G|d ·2|AP |+d·|B;|)2O(|Φ|)
, where d is the maximum

branching degree in G.
The 2-Exptime-hardness of SUSRec is inherited from the 2-Exptime-completeness

of solving CTL∗ games (Kupferman and Vardi, 1997). �

20



Synthesis of strictly-uniform strategies. We have seen that the problem SUSRec is
decidable. In fact the associated synthesis problem can be solved with the same time
complexity. Indeed, a uniform strategy (if any) can be synthesized when checking the
non-emptiness of the JTA that accepts uniform strategy trees: first, build the linear size
equivalent two-way tree automaton of Proposition 6, then turn it into an equivalent non-
deterministic parity tree automaton with exponentially many states but a linear number
of priorities. Classic decision procedures for the emptiness of parity tree automata can
be adapted to provide, in case the language is not empty, a regular tree in the language
(Löding, 2014). This regular tree represents a uniform strategy, and it can be seen as
a finite state automaton that implements this uniform strategy. The number of states
represents the memory needed by the strategy, and it is the same as in the nondeter-
ministic tree automaton. To conclude, a memory polynomial in |G|, exponential in |B;|
and doubly exponential in |Φ| is enough for strictly-uniform strategies with recognizable
relations.

6. Fully-uniform strategies

We turn to the dual case where only full quantifiers are allowed. We consider the
decision problem of the existence of a fully-uniform strategy, but like in the decidable case
for strictly-uniform strategies, our decision procedures can be adapted with no additional
cost to effectively provide a uniform strategy whenever there exists one. Once again we
consider the class of rational relations.

We established in Maubert and Pinchinat (2014), with LTL as base language, that
the existence of a fully-uniform strategy is decidable for the class of rational relations,
and we gave a non-elementary decision procedure. More precisely, we proved that if the
maximum nesting of ; quantifiers in the uniformity properties is k then the problem is in
k-Exptime – 2-Exptime for k ≤ 2. The first contribution of this section is to generalize
this result to uniformity properties with linear and branching time connectives, and to
establish the matching lower-bounds. As a second contribution we exhibit a rich subclass
of rational relations, called K45NM, for which the problem has the same complexity as
the strategy problem for CTL∗ games, i.e. 2-Exptime-complete.

We first formally define the decision problems considered and state our results. Next
we introduce the notion of information set automata, which is central in our decision
procedures. Then we adapt the proof from Maubert and Pinchinat (2014) for the k-
Exptime upper bounds, and make it more modular by using information set automata.
Again relying on these automata we establish that the fully-uniform strategy problem
for relations in K45NM is in 2-Exptime, and we finish with the matching lower bounds.

6.1. Main results

First, let FL; denote the language of full uniformity constraints, i.e. the sublanguage
of L; that does not allow strict quantifiers ( ;) but only full ones ( ; ).

The ; -depth of a FL; formula ϕ, written d(ϕ), is the maximum number of nested
; quantifiers in ϕ, defined inductively as follows:

d(p) = 0 d(¬ϕ) = d(ϕ) d(ϕ ∨ ϕ′) = max(d(ϕ), d(ϕ′)) d( ;ϕ) = 1 + d(ϕ)
d(Aψ) = d(ψ) d(Xψ) = d(ψ) d(ψUψ′) = max(d(ψ), d(ψ′))
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For k ∈ N, we let FLk; := {ϕ ∈ FL; | d(ϕ) ≤ k} and we define the decision problem
FUSk.5

Definition 11. For each k ∈ N, we let

FUSk :=

 G is a finite 2AP -labelled arena, T is a transducer over 2AP ,
(G, T,Φ) Φ ∈ FLk;, and there exists a

([T ],Φ)-uniform strategy for Player 1 in G.


The fully-uniform strategy problem is FUS :=

⋃
k∈N FUSk. We let the size of an

instance be the sum of the sizes of its components, plus the number of atomic propositions
used: |(G, T,Φ)| = |G|+ |T |+ |Φ|+ |AP |.

Theorem 3. FUSk is k-Exptime-complete if k ≥ 2, otherwise it is 2-Exptime-complete.

Corollary 4. The fully-uniform strategy problem is nonelementary.

We now turn to our second result. First, recall that K45 is the set of transitive
and Euclidean relations6, which are “almost” equivalence relations, and are relevant for
example in the context of belief revision and modelling plausibility (Fagin et al., 1995).

We define in our setting the classic notion of No Miracles (Pacuit and van Benthem,
2006):

Definition 12. A binary relation ; ⊆ Σ∗×Σ∗ satisfies the No Miracles property if for
all u, v, w ∈ Σ∗, u ; v implies u · w ; v · w.

We note K45NM for the set of transitive, Euclidean and No Miracles rational re-
lations, and we call FUSK45NM the restriction of FUS to K45NM relations, i.e. for an
input (G, T,Φ) of FUSK45NM, we assume that [T ] is transitive, Euclidean and verifies No
Miracles.

Theorem 4. FUSK45NM is 2-Exptime-complete.

This result is of interest as most relations used to represent uncertainty fall into
this class, like synchronous or asynchronous perfect recall relations, and in general all
equivalence relations induced by alphabetic morphisms.

We now introduce information set automata, and then we use them to prove the
upper bounds of Theorem 3 and Theorem 4. We prove the lower bounds at the end of
the section.

6.2. Information set automaton

The notion of information set is classic in games with imperfect information. After
a finite play, a player’s information set is the set of positions considered possible by
this player according to what she has observed so far. We introduce a general notion
of information set: informally, given a binary relation over finite words, the information
set of a word is the set of all last letters of related words. We then describe how, when
given a transducer that recognizes a binary relation, one can build a deterministic word

5We use Φ for the input formula, and ϕ for subformulas.
6A relation ; is Euclidean if u ; v and u ; w implies v ; w.
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automaton that computes the information set of its input word. We also introduce a
bisimulation relation on states of this automaton, called the information set bisimulation,
and we consider the quotient automaton. We prove that for relations in K45NM, two
related plays take the quotient automaton to the same state. This result is crucial for
the upper bound of Theorem 4.

Definition 13. Let Σ be an alphabet, and ; ⊆ Σ∗ × Σ∗ be a binary relation over Σ∗.
For w ∈ Σ∗, the information set after the word w is:

I(w) = {a ∈ Σ | w ; w′ · a for some w′ ∈ Σ∗}

For the rest of Section 6.2 we fix a transducer T = (Σ, Q,∆, qι, QF ) over alphabet Σ.
We describe a powerset construction that transforms T into a deterministic automaton
that computes information sets for [T ]. Transducers cannot be determinized in general,
but because we only aim at computing information sets we can afford to forget the output
tape, except for the last letter. This allows us to obtain a deterministic automaton AT
that we call the information set automaton.

Computing information sets in the classic framework of imperfect-information games
(see Section 4.1) is simple: the player only needs to remember the current information
set, and update it with each newly observed position. In the case of rational relations in
general, information sets cannot be inferred from the new position and the previous infor-
mation set only, and more information needs to be stored in the states of the information
set automaton.

While reading a word w, we remember two things: first, the set of states q that the
transducer may have reached by nondeterministic runs on input w, and second, for each
such state q, the set Last(q) of all last letters of output words in a run on input w that
ends in q. Therefore, states of AT are pairs of the form (S,Last), with S ⊆ Q and
Last : Q→ 2Σ (recall that Q is the transducer’s set of states).

Definition 14 (Information set automaton). The deterministic information set automa-
ton for T = (Σ, Q,∆, qι, QF ) is AT = (Σ, A, δ, αι), where

• A = 2Q × (Q→ 2Σ)

• αι = (Sι, Lastι), with

– Sι = {q | ∃w ∈ Σ∗, qι −[ε/w]→ q} and

– Lastι(q) = {a | ∃w ∈ Σ∗, qι −[ε/w · a]→ q}
• δ((S,Last), a) = (S′, Last′), with

– S′ = {q′ | ∃q ∈ S,∃w ∈ Σ∗, q −[a/w]→ q′} and

– Last′(q′) = {a′ | ∃q ∈ S, ∃w ∈ Σ∗, q −[a/w · a′]→ q′, or
q −[a/ε]→ q′ and a′ ∈ Last(q)}

First, observe the initial state (Sι, Lastι): Sι is the set of states that can be reached
internally (i.e. by reading nothing) from qι, and for each state q ∈ Sι, Lastι(q) is the set
of letters found at the end of the output tape in runs that internally reach q.

We now detail how for a current state (S,Last) and a new input letter a, we build
the successor state δ((S,Last), a) = (S′, Last′). First, S′ is made of all the states q′ that
can be reached from a state q ∈ S with a transition of the form q−[a/w]→ q′ with w ∈ Σ∗.
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If w = w′ · b, then b is added to Last′(q′), otherwise w = ε and each b ∈ Last(q) can
still be the last letter on the output tape after reading a and reaching q′, therefore we
let b ∈ Last′(q′). Note that by definition Last′(q′) = ∅ for each q′ /∈ S′.

Since AT is complete, δ(αι, w) is defined (in the classic way) for all w ∈ Σ∗. We
define the size of an information set automaton as its number of transitions: |AT | = |δ|.
Note that because AT is complete and deterministic, |δ| = |A| · |Σ|.

Lemma 3. AT is of size 2O(|T |·|Σ|) and can be computed in time 2O(|T |·|Σ|).

Finally, for every state α = (S,Last) of AT , we define:

α.I :=
⋃

q∈S∩QF

Last(q)

We prove that the components S and Last actually capture what they are meant to:

Lemma 4. Let w ∈ Σ∗. If (S,Last) = δ(αι, w), then:

1. S = {q | ∃w′ ∈ Σ∗, qι −[w/w′]→ q}, and

2. for each q ∈ S, Last(q) = {a′ | ∃w′ ∈ Σ∗, qι −[w/w′ · a′]→ q}.

Proposition 7. For every word w ∈ Σ∗, δ(αι, w).I = I(w).

Proof. Let w ∈ Σ∗, and let (S,Last) = δ(αι, w). Recall that I(w) = {a ∈ Σ | ∃w′ · a ∈
Σ∗, w ; w′ · a} (Definition 13).

We start with the left-to-right inclusion. Let a ∈ (S,Last).I. By definition, a ∈
Last(q) for some q ∈ S∩QF . By Lemma 4, there exists w′ ∈ Σ∗ such that qι−[w/w′ · a]→ q,
and because q ∈ QF , we have that (w,w′ · a) ∈ [T ] = ;, hence a ∈ I(w).

For the right-to-left inclusion, take a ∈ I(w). There exists w′ such that w ; w′ · a.
Since ; = [T ], there exists q ∈ QF such that qι −[w/w′ · a]→ q. By Lemma 4, q ∈ S, and
a ∈ Last(q). Since q ∈ S ∩QF , a ∈ (S,Last).I.

Information set bisimulation and quotient automaton.

We define a bisimulation relation over the states ofAT , the information set automaton
for T , that we call the information set bisimulation. Informally, two states are informa-
tion set bisimilar if reading a word starting from one state or the other leads to the same
information set.

Definition 15 (Information set bisimulation). A binary relation R ⊆ A × A is an
information set bisimulation if, for all α, α′ in A,

• αRα′ → α.I = α′.I and

• for all a ∈ Σ, δ(α, a)Rδ(α′, a) (recall that AT is deterministic and complete).

Two states α, α′ ∈ A are information set bisimilar, written α -I α
′, if there is an

information set bisimulation R such that αRα′, and we call -I the information set
bisimilarity relation. Note that -I is an equivalence relation. For a state α, [α]-I
denotes the equivalence class of α. We first state the following straightforward lemma:

Lemma 5. If α -I α
′ then for all w ∈ Σ∗, δ(α,w) -I δ(α

′, w).
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We also establish a useful characterization of information set bisimilar states:

Lemma 6. For α, α′ ∈ A, α -I α
′ if, and only if, for all w ∈ Σ∗, δ(α,w).I = δ(α′, w).I.

We now show that quotienting the information set automaton AT with -I yields an
automaton that still computes the information sets for T .

Definition 16. The quotient automaton is AT-I = (A-I , δ-I , [αι]-I ), where:

• A-I is the set of equivalence classes of -I ,

• for a ∈ Σ, δ-I ([α]-I , a) = [δ(α, a)]-I , and

• [α]-I .I = α.I.

Lemma 7. AT-I is well defined and can be computed in time O(|AT |2).

Proof. For α, α′ ∈ A such that α -I α
′, we have that α.I = α′.I, so the information set

of a state [α]-I is well defined. Also for α, α′ ∈ A and a ∈ Σ, δ(α, a) -I δ(α
′, a), hence

[δ(α, a)]-I = [δ(α′, a)]-I and δ-I is well defined.
The relation -I can be computed in time O(|AT |2) (Kanellakis and Smolka, 1990),

and from -I the quotient automaton AT-I is computed in linear time.

The following lemma is easily proved by induction:

Lemma 8. For all w ∈ Σ∗, δ-I ([αι]-I , w) = [δ(αι, w)]-I .

It follows that the quotient automaton still computes information sets correctly:

Proposition 8. For all w ∈ Σ∗, δ-I ([αι]-I , w).I = I(w).

We now turn to the proofs of Theorems 3 and 4.

6.3. Upper bounds

We establish the upper bounds for Theorem 3 and Theorem 4. We first observe that
in the degenerate case FUS0, the formula Φ ∈ FL0

; being a CTL∗ formula, the transducer
is irrelevant, and in fact the problem FUS0 is exactly the problem of solving games with
CTL∗ winning condition. This problem is known to be 2-Exptime-complete (Kupferman
and Vardi, 1997), and we rephrase the precise upper-bound in our context.

Proposition 9. Let G be a 2AP -labelled arena and Φ ∈ CTL∗. Solving the CTL∗ game

(G,Φ) can be done in time (|G|d · 2|AP |)2O(|Φ|)
, where d is the maximum branching degree

in G.

The general case

Let us fix for this section an instance (G, T,Φ) of FUSk+1, where k ≥ 0, G =
(V,E, Vι, vι, µ), and let us note once more Σ = 2AP and ; = [T ]. We describe a powerset
construction that, relying strongly on the information set automaton, builds an instance
of FUSk of exponential size that is equivalent to (G, T,Φ) as regards the existence of
uniform strategies. Iterating this powerset construction yields an equivalent instance of
FUS0, which can be solved in time doubly exponential in the size of the formula (Propo-
sition 9). In addition, a winning strategy in the latter CTL∗ game straightforwardly
provides a uniform strategy in the original instance.
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Because the semantics of the full quantifier depends only on the universe and the
binary relation, and not on the particular strategy Φ is evaluated on, we can use a
bottom-up evaluation process in the formula before addressing the existence of a strategy.
Informally, like in the classic powerset construction for games with imperfect information
(Reif, 1984), we build an arena with information sets in the positions, in which formulas
of the form ;ϕ can be evaluated positionally if ϕ ∈ CTL∗. According to the semantics
of ; , after a finite play, the information set that we require is the set of last positions
of related finite paths in the universe.

First, observe that T works on alphabet Σ, hence using AT we would get sets of
valuations instead of sets of positions. We remedy this technical problem by building a
transducer TV that recognizes the relation on V ∗ induced by ;. Formally, TV = TV→Σ ◦
T ◦ TΣ→V , where TV→Σ is a one-state deterministic transducer with |V | transitions that
outputs the valuations of the positions it reads, TΣ→V is its (nondeterministic) inverse of
same size, and ◦ is the composition operator on transducers (Elgot and Mezei, 1965). We
obtain [TV ] = [TV→Σ]◦[T ]◦[TΣ→V ], i.e. [TV ] = {(w,w′) | w,w′ ∈ V ∗ and µ(w) ; µ(w′)},
and |TV | = |TV→Σ| · |T | · |TΣ→V | = O(|T | · |G|2).

The second technical problem is that [TV ] may relate sequences of positions that are
not paths of the universe U = Paths∗(Vι). To fix this, we define TG = TV ◦ TU , where
TU is a transducer that recognizes the identity relation over the regular language U . We
have that |TG | = |TV | · |TU | = O(|TV | · |G|) = O(|T | · |G|3), and [TG ] = [TV ] ∩ (V ∗ × U).
Let ATG = (A, δ, αι) be the information set automaton for TG .

Lemma 9. For all w ∈ V ∗, δ(αι, w).I = {v | ∃ρ · v ∈ U , w ; ρ · v}.

Proof. This follows directly from the definition of TG and Proposition 7.

We describe the synchronization of the arena G with ATG , which yields an arena Ĝ
that has the same dynamics as G, but in addition computes the information sets required
to evaluate fully-quantified formulas.

Definition 17. Let Ĝ := (V̂ , Ê , V̂ι, v̂ι, µ̂), with

• V̂ = V ×A,

• for all (v, α) ∈ V̂ , for all v′ ∈ V such that v → v′, (v, α) →̂ (v′, δ(α, v′))

• V̂ι = {(v, δ(αι, v)) | v ∈ Vι}
• v̂ι = (vι, δ(αι, vι)) and

• µ̂(v, α) = µ(v)

Each path in G defines a unique path in Ĝ, and vice versa. To avoid confusion we shall
use a “hat” version of each notation when it refers to the powerset arena Ĝ. Consider
the following function:

f : Pathsω(Vι)→ P̂ athsω(V̂ι)

π 7→ π̂ where for each i ≥ 0, π̂[i] = (π[i], δ(αι, π[0, i])).

Clearly, f is a bijection between Pathsω(Vι) and P̂ athsω(V̂ι), i.e. between universes U
and Û . When π is given, we shall write π̂ for f(π), and when π̂ is given, π shall denote
f−1(π̂), and similarly for finite paths.
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The next step is to eliminate all subformulas of Φ of the form ;ϕ with d(ϕ) = 0,

i.e. ϕ ∈ CTL∗. For each such subformula ;ϕ and each position v̂ = (v, α) of Ĝ, we
model-check ϕ in all positions of the information set α.I. Since ϕ holds in all these
positions iff ;ϕ holds in (every finite path ending in) v̂, we can mark v̂ with a fresh
atomic proposition p ; ϕ when appropriate. This procedure, which we shall refer to as

the marking phase, is described in Algorithm 1. From now on, Ĝ refers to the powerset
arena after its labelling has been enriched by this marking phase.

foreach ;ϕ ∈ Sub(Φ) such that d(ϕ) = 0 do

foreach v̂ = (v, α) ∈ V̂ do
if ∀v′ ∈ α.I, v′ |= ϕ then

µ̂(v̂) := µ̂(v̂) ∪ {p ; ϕ};
end

end

end

Algorithm 1: Marking the positions of Ĝ.

For a state formula ϕ, we define ϕ̂ as the formula obtained by replacing each innermost
subformula of the form ;ϕ′ with p ; ϕ′ , and similarly for path formulas. For example, if
ϕ = ;p ∧AG ; EX ; q, then ϕ̂ = p ; p ∧AG ; EXp ; q.

It just remains to define the transducer T̂ such that ρ ; ρ′ if and only if ρ̂ ;̂ ρ̂′, where
;̂ = [T̂ ]. By Definition 17, a position (v, α) in Ĝ has the same valuation as the underlying
position v in G, except for the fresh atomic propositions added during the marking phase.
So, noting ÂP the set AP augmented with these fresh atomic propositions, we just modify

T so that it works on alphabet 2ÂP but ignores these additional propositions. Thus we
define T̂ = T

2ÂP→2AP
◦ T ◦ T

2AP→2ÂP
, where T

2ÂP→2AP
is a one state deterministic

transducer that reads valuations on ÂP and outputs underlying valuations on AP by
erasing fresh propositions, and T

2AP→2ÂP
is its inverse. The number of fresh atomic

propositions is bounded by |Φ|, so |T̂ | = O(2|ÂP | · |T | · 2|ÂP |) = |T | · 2O(|G|+|Φ|), and

noting ;̂ = [T̂ ] we have that for ρ, ρ′ ∈ Paths∗(Vι), ρ ; ρ′ if and only if ρ̂ ;̂ ρ̂′.

Since d(Φ̂) = d(Φ)− 1 = k, (Ĝ, T̂ , Φ̂) is an instance of FUSk, and we prove that:

Proposition 10. (G, T,Φ) ∈ FUSk+1 if, and only if, (Ĝ, T̂ , Φ̂) ∈ FUSk.

We establish Lemma 10 below, and Proposition 10 follows from the fact that the

bijection f between Pathsω(Vι) and P̂ athsω(V̂ι) induces a bijection between strategy

trees in G and strategy trees in Ĝ.
More precisely, f induces a bijection between the trees of paths in G and those in Ĝ.

For any t ⊆ Paths∗(v) where v ∈ Vι, we define t̂ ⊆ P̂ aths∗(v, δ(αι, v)) by t̂ = {ρ̂ | ρ ∈ t},
with labelling ̂̀(ρ̂) = µ̂(last(ρ̂)). Notice that a node x ∈ t being a finite path, x̂ is defined.

Lemma 10. For any state formula ϕ ∈ Sub(Φ) and for any labelled tree t ⊆ Paths∗(Vι),
we have: for all x ∈ t, t, x |= ϕ if, and only if, t̂, x̂ |= ϕ̂.

Lemma 10 shows that each powerset construction yields an equivalent FUS instance
with a strictly smaller ; -depth, and iterating the process we obtain an equivalent CTL∗
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game that it remains to solve, which is a 2-Exptime-complete problem (Kupferman and
Vardi, 1997) (see also Proposition 9).

We can now establish the upper bound for Theorem 3. For convenience, we introduce
iterated exponential functions as follows:

Definition 18. For all k, n ∈ N, exp0(n) = n and expk+1(n) = 2expk(n).

Proposition 11. Let (G, T,Φ) be an instance of FUSk for some k ≥ 0, and note d the
maximum branching degree in G. Deciding whether (G, T,Φ) ∈ FUSk can be done in time

expk(|G, T,Φ|O(1))
d·|AP |·2O(|Φ|)

.

Proof. The proof is by induction on k.

Case k = 0. Let (G, T,Φ) be an instance of FUS0. FUS0 is exactly the strategy problem
for Player 1 in CTL∗ games, and by Proposition 9 this problem can be solved in

time (|G|d · 2|AP |)2O(|Φ|)
, which is less than exp0(|G, T,Φ|)d·|AP |·2

O(|Φ|)

.

Case k + 1. Let (G, T,Φ) be an instance of FUSk+1, with k ≥ 0. By Proposition 10,

deciding whether (G, T,Φ) ∈ FUSk+1 is equivalent to deciding whether (Ĝ, T̂ , Φ̂) ∈
FUSk. Letting d be the maximum branching degree in Ĝ, by induction hypothesis

this can be done in time expk(|Ĝ, T̂ , Φ̂|O(1))
d·|ÂP |·2O(|Φ|)

. Observe that by construc-

tion of Ĝ, d is also the maximum branching degree in G. Also, the number of fresh
atomic propositions used in the marking phase is bounded by |Φ|, such that |ÂP | ≤

|AP |+ |Φ| and expk(|Ĝ, T̂ , Φ̂|O(1))
d·|ÂP |·2O(|Φ|)

is in expk(|Ĝ, T̂ , Φ̂|O(1))
d·|AP |·2O(|Φ|)

.

We prove that the instance (Ĝ, T̂ , Φ̂) is of size |Ĝ, T̂ , Φ̂| = 2|G,T,Φ|
O(1)

, hence solving

it takes time expk+1(|G, T,Φ|O(1))
d·|AP |·2O(|Φ|)

. We also prove that computing the

powerset instance (Ĝ, T̂ , Φ̂) takes time less than 2|G,T,Φ|
O(1)

, so that the decision

procedure runs in time expk+1(|G, T,Φ|O(1))
d·|AP |·2O(|Φ|)

.
First, by Lemma 3, ATG is of size 2O(|TG |·|Σ|), which is also the time needed to
compute it. Because TG works on alphabet Σ = V and is of size |T | · |G|3, we have

that |ATG | = 2O(|TG |·|Σ|) = 2(|G|+|T |)O(1)

. Then, computing Ĝ from G and ATG takes

time |G| · |ATG | = 2(|G|+|T |)O(1)

, which is also the size of Ĝ. Performing the marking
phase requires to model-check at most |Φ| CTL∗ formulas |G| times. Model-checking
CTL∗ is in Pspace hence in Exptime, thus the marking phase can be done in time

2(|G|+|Φ|)O(1)

. Finally, we have seen that |T̂ | ≤ |T | · 2O(|AP |) · 2O(|Φ|), and it is also
the time needed to compute it. Summing up everything yields the required results.

By Proposition 11, the complexity bounds are as follows:

• FUS0 can be solved in time |G, T,Φ|d·|AP |·2O(|Φ|)
,

• FUS1 can be solved in time 2|G,T,Φ|
O(1)·2O(|Φ|)

(because d ≤ |G| and |AP | ≤ |G, T,Φ|),
• and for k ≥ 2, FUSk can be solved in time expk(|G, T,Φ|O(1)).

This establishes the upper bounds for Theorem 3.
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The elementary case

We prove Theorem 4 which considers binary relations in K45NM. For such relations,
all the ; quantifiers can be eliminated in the formula with a single powerset construction.

Consider the marking phase described in Algorithm 1. To evaluate whether ;ϕ holds
in a position v̂ reached after some finite play ρ̂, we have to evaluate formula ϕ in all paths
ρ′ such that ρ ; ρ′. If ϕ does not contain any subformula of the form ;ϕ′, i.e. ϕ is
a CTL∗ state formula, knowing the last position of each such ρ′ is sufficient to evaluate
ϕ; the information set contained in v̂ provides it. But if ϕ has subformulas of the form
;ϕ′, evaluating ϕ in a related path ρ′ requires not only the last position of ρ′, but also
the state δ(αι, ρ

′) of ATG after reading ρ′.
In the general case, as described in the proof of Proposition 11, we perform a new

powerset construction, such that information sets are sets of positions of Ĝ, i.e. an element
of an information set is a pair (v, α) where v is the last position of a related path, and α
the state of ATG after reading this path.

The reason why FUSK45NM is elementary lies in the fact that if ; is in K45NM and
ρ ; ρ′, then δ(αι, ρ) and δ(αι, ρ

′) are information set bisimilar. To take advantage of this

we do not build Ĝ from ATG directly, but we first quotient it according to Definition 16.
Thus in Algorithm 1, when evaluating ;ϕ in a position v̂ = (v, α) reached after some
play ρ̂, we know that for each path ρ′ such that ρ ; ρ′, δ(αι, ρ

′) = α, so that we can

evaluate ϕ directly in position v̂′ = (last(ρ′), α) of Ĝ.
Let (G, T,Φ) be an instance of FUSK45NM, note V the set of positions in G and ; = [T ]

(recall that ; is a K45NM relation). We describe how, with one powerset construction
only, we obtain an equivalent CTL∗ game.

First, like in the general case, let us define TV the transducer that relates two words
in V ∗ if the corresponding sequences of valuations are related by T , and define TG the
restriction of TV that only outputs words in U = Paths∗(Vι). Now we build the infor-
mation set automaton ATG for TG and we quotient it by its bisimilarity relation -I . Let
ATG-I = (A, δ, αι) be this quotient information set automaton.

We first state that this quotient automaton computes the information we need. It
follows directly from Lemma 9 and Proposition 8:

Lemma 11. For all w ∈ V ∗, δ(αι, w).I = {v | ∃ρ · v ∈ U , w ; ρ · v}.
The following lemma is the crucial point that makes the problem elementary for

K45NM relations.

Lemma 12. For all w,w′ ∈ V ∗, if w ; w′ then δ(αι, w) = δ(αι, w
′).

We define the powerset arena as in Definition 17, except that we synchronize G with
ATG-I instead of ATG . We note it G̃ = (Ṽ , Ẽ , Ṽι, ṽι, µ̃).

The bijection f between U and Ũ is defined as in the general case: for an infinite
path π, f(π) = π̃ where for each i ≥ 0, π̃[i] = (π[i], δ(αι, π[0, i])), and similarly for finite
paths and for trees. To avoid confusion with the general case we denote the image of an
object by f with a tilde instead of a hat (ρ̃, t̃, . . . ).

For a L; formula ϕ we define its flattening ϕ̃ as the CTL∗ formula obtained by recur-
sively replacing each subformula ;ϕ′ with p ; ϕ′ , starting from innermost subformulas.
For example,

˜; EX ; q = p ; EXp ; q
.
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We describe in Algorithm 2 the new marking procedure, which evaluates all subfor-
mulas of the form ;ϕ, starting with the innermost ones, and at the same time computes
the flattening of Φ. From now on, G̃ refers to the powerset arena after its labelling has
been enriched by this marking phase.

Φ̃ := Φ;

while d(Φ̃) > 0 do

foreach ;ϕ ∈ Sub(Φ̃) such that d(ϕ) = 0 do

foreach ṽ = (v, α) ∈ Ṽ do
if ∀v′ ∈ α.I, (v′, α) |= ϕ then

µ̃(ṽ) := µ̃(ṽ) ∪ {p ; ϕ};
end

end

Φ̃ := Φ̃[p ; ϕ/ ;ϕ]
end

end

Algorithm 2: Marking the positions of G̃.

Lemma 13. For all state formula ϕ ∈ Sub(Φ), for all v ∈ Vι, for all labelled tree
t ⊆ Paths∗(v) and for all x ∈ t, t, x |= ϕ if, and only if, t̃, x̃ |= ϕ̃.

Proposition 12. For an instance (G, T,Φ) of FUSK45NM, whether (G, T,Φ) ∈ FUSK45NM

can be decided in time 2(|G,T,Φ|)O(1)·2O(|Φ|)
.

Proposition 12 gives the upper bound for Theorem 4. Note that the complexity is
doubly exponential in the size of the formula, but for a fixed formula the problem falls
in Exptime.

Synthesis of fully-uniform strategies. Regarding the problem of synthesizing uni-
form strategies, both in the general and the elementary case, the final step of the deci-
sion procedure consists in solving the final CTL∗ game, and this is done by deciding the
nonemptiness of a parity tree automaton. As mentioned in Remark 5.3, decision pro-
cedures for the emptiness of parity tree automata can synthesize a finitely represented
tree in the language if it is not empty. This regular tree represents a finite memory win-
ning strategy in the CTL∗ game. Assuming that each position v in the original arena is
identified with a dedicated atomic proposition pv enables to keep track in the successive
powerset constructions of which original position underlies a powerset one. This way
a regular winning strategy in the CTL∗ game readily gives a fully-uniform strategy in
the initial game. This regular strategy has the same number of states as the parity tree
automaton. In the elementary case, this would be doubly exponential in the size of the
formula. In the general case it would be the same for a ; -depth below 2, and above it
would be k-exponential in the size of the original problem.

6.4. Lower bounds

Regarding Theorem 4, we easily have:
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Proposition 13. FUSK45NM is 2-Exptime-hard.

Proof. The problem of solving CTL∗ games, which is 2-Exptime-complete (Kupferman
et al., 2001), readily reduces to FUSK45NM.

In the rest of the section we establish the lower bounds for Theorem 3.
FUS, like FUSK45NM, contains the problem of solving CTL∗ games, which gives the

2-Exptime lower bound for FUS0 and FUS1. It remains to prove the k-Exptime lower
bounds for FUSk with k ≥ 2, which is done by the following proposition.

Proposition 14. For k ∈ N, FUSk+1 is (k+1)-Exptime-hard even if the FLk+1
; formula

is assumed to be fixed and the transducer is assumed to be synchronous.

For each k ∈ N, let exp[k] denote the class of functions f : N→ N such that for some
constant c ≥ 1, f(n) = expk(nc) for all n ∈ N.

Fix k ≥ 0. Proposition 14 is proved by a polynomial-time reduction from the word
problem for exp[k]-space bounded alternating Turing Machines with a binary branch-
ing degree and without halting configurations, which is a well-known (k + 1)-Exptime-
complete problem (Chandra et al., 1981). Fix such an alternating Turing Machine
M = (A,Q = Q∃ ∪ Q∀, qι, δ, F ) over the input alphabet A, where the set of states
Q is partitioned into a set Q∃ of existential states and a set Q∀ of universal states, qι is
the initial state, F is the set of accepting states, and the transition function is of type

δ : Q×A→ (Q×A× {←,→})× (Q×A× {←,→})

(in each step, M overwrites the tape cell being scanned, and the tape head moves one
position to the left – ← – or to the right – →). Fix an input α and let n = |α|.

Note that a configuration ofM, or TM configuration, can be seen as a word α1 ·(q, a) ·
α2 in A∗ · (Q × A) · A∗, where α1 · a · α2 denotes the tape content, q the current state,
and the reading head is at position |α1|+ 1. A TM configuration is well-formed if it has
length exactly expk(n). Since M is exp[k]-space bounded, without loss of generality, we
can assume that each reachable TM configuration from the fixed input α is well-formed.
In particular, the initial TM configuration is the unique well-formed TM configuration
having the form (qι, α(1))α(2) . . . α(n)# . . .#, where # is the blank symbol. For a TM
configuration C = α1 · (q, a) · α2, the left (resp., right) successor of C is the successor of
C obtained by choosing the left (resp., the right) triple in δ(q, a). A computation tree
of M (over α) is an infinite binary tree whose nodes are labelled by well-formed TM
configurations and that verifies: (i) the root is labelled by the initial TM configuration,
(ii) each node labelled by an existential TM configuration C (i.e., the associated state is
in Q∃) has a unique child, labelled by some successor of C, and (iii) each node labelled
by an universal TM configuration C (i.e., the associated state is in Q∀) has two children,
labelled by the left and right successors of C, respectively. A computation tree of M is
accepting if each infinite branch from the root visits some accepting TM configuration.
M accepts α iff there is an accepting computation tree of M.

Proposition 14 directly follows from the following proposition.

Proposition 15. There is a fixed FLk+1
; formula ϕ (independent of n and M) such

that one can build – in time polynomial in n and the size of M – a 2AP -labelled arena
G = (V,E, Vι, vι, µ) and a finite-state synchronous transducer T over the alphabet 2AP so
that M accepts α iff Player 1 in G admits a ([T ], ϕ)-uniform strategy.
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Proof of Proposition 15. We assume that k ≥ 1 (the case k = 0 being simpler). First,
we define a suitable encoding of (well-formed) TM configurations, obtained by using the
following set AP of atomic propositions:

AP := A ∪ (Q×A) ∪ {$1, . . . , $k, $, $acc, 0, 1, L,R,∃,∀} ∪ {inc,=, good}

For each cell of a well-formed TM configuration C, we keep track of the content of the
cell together with a suitable encoding of the cell number which is a natural number
in [0, expk(n) − 1]. Thus, for all 1 ≤ h ≤ k, we define the notions of h-block and
well-formed h-block. Essentially, for h < k, well-formed h-blocks are finite words over
{$1, . . . , $h, 0, 1} which encode integers in [0, exph(n)−1], while well-formed k-blocks are
finite words over A ∪ (Q × A) ∪ {$1, . . . , $k, 0, 1} which encode the cells of well-formed
TM configurations. In particular, for h > 1, a well-formed h-block encoding a natural
number m ∈ [0, exph(n) − 1] is a sequence of exph−1(n) (h − 1)-blocks, where the ith

(h − 1)-block encodes both the value and (recursively) the position of the ith-bit in the
binary representation of m. Formally, the set of (well-formed) h-blocks is defined by
induction on h as follows:

Base Step: h = 1. The notions of 1-block and well-formed 1-block coincide, and a
1-block is a finite word bl having the form bl = $1τbit1 . . . bitn$1 such that bit1, . . . , bitn ∈
{0, 1} and τ ∈ {0, 1} if 1 < k, and τ ∈ A ∪ (Q × A) otherwise. We say that biti (for
1 ≤ i ≤ n) is the ith bit of bl. The content of bl is τ , and the index of bl is the natural
number in [0, exp1(n) − 1] (recall that exp1(n) = 2n) whose binary code is bit1 . . . bitn.
The 1-block bl is initial (resp., final) if biti = 0 (resp., biti = 1) for all 1 ≤ i ≤ n.

Induction Step: 1 < h ≤ k. An h-block is a finite word bl having the form $h · τ ·
bl0 . . . blj · $h such that j > 0, bl0, . . . , blj are (h− 1)-blocks, and τ ∈ {0, 1} if h < k, and
τ ∈ A ∪ (Q × A) otherwise. Additionally, we require that bl0 is initial, blj is final, and
for all 0 < i < j, bli is not final. The content of bl is τ . The h-block bl is initial (resp.,
final) if the content of bli is 0 (resp., 1) for all 0 ≤ i ≤ j. The h-block bl is well-formed
if additionally, the following holds: j = exph−1(n) − 1 and for all 0 ≤ i ≤ j, bli is
well-formed and has index i. If bl is well-formed, then its index is the natural number in
[0, exph(n) − 1] whose binary code is given by bit0, . . . , bitj , where biti is the content of
the sub-block bli for all 0 ≤ i ≤ j.

Encoding of (well-formed) TM configurations. Let C = C(0) . . . C(j) be a TM
configuration of length at least 2. A TM configuration code (for C) is a word over
AP \ {inc,=, good, L,R,∃,∀} of the form code = τ · bl0 . . . blj · τ satisfying the following:

• τ = $ if C is not accepting and τ = $acc otherwise;

• for all 0 ≤ i ≤ j, bli is a k-block whose content is C(i);

• bl0 is initial and blj is the unique final k-block.

We say that code is initial if C is of the form (qι, α(0))α(1) . . . α(n)# . . .# (note that
we do not require that C is the well-formed initial TM configuration). Moreover, we
say that code is well-formed if additionally, j = expk(n) − 1 (hence, C is well-formed)
and for all 0 ≤ i ≤ j, bli is well-formed and has index i. Note that there is exactly one
well-formed TM configuration code associated with a well-formed TM configuration.
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Encoding of TM computations. We use the four additional symbols L, R, ∃, and
∀ to encode single computations of M. Intuitively, the symbol ∃ (resp., ∀) is used to
delimit an existential (resp., universal) configuration, while the symbol L (resp., R) is
used to delimit the left (resp., right) successor of a TM configuration. A TM computation
code is an infinite sequence ν of the form ν = code0 ·Q0 ·dir1 ·code1 ·Q1 ·dir2 . . . such that
for all i ≥ 0, codei is a TM configuration code which is initial if i = 0, diri+1 ∈ {L,R},
and Qi = ∃ if the TM configuration Ci associated with codei is existential, and Qi = ∀
otherwise. The TM computation code ν is well-formed if codei is well-formed for all i ≥ 0,
and ν is accepting if ν visits some accepting configuration code. Moreover, ν is fair if
additionally, Ci+1 is the left successor of Ci if diri+1 = L, and the right successor of Ci
otherwise. Thus, the accepting, fair, and well-formed TM computation codes encode all
the possible accepting TM computations of M over α.

Note that we have not used the symbols in {inc,=, good} in the encoding of TM
computations. These extra symbols are used to mark positions along a TM computation
code and are crucial for the implementation of transducer satisfying Proposition 15. So,
we give the following additional definitions. For a word w over 2AP , the content of w
is the word over 2AP\{inc,=,good} obtained by removing from each letter in w the extra
symbols in {inc,=, good}. An extended TM computation code is an infinite word over
2AP whose content corresponds to a TM computation code. For an arena with labelling
over 2AP and a play π, the content of π is the content of its labelling µ(π).

Construction of the arena G in Proposition 15. The following is straightforward:

Lemma 14. One can construct in time polynomial in n and the size ofM, a 2AP -labelled
arena G = (V,E, Vι, vι, µ) such that Vι = {vι} and the following holds:

1. for each extended TM computation code ν, there is a play whose labelling is ν;
2. for each finite play ρ, the labelling νρ of ρ is the prefix of some extended TM

computation code; moreover, for each extended TM computation code ν having νρ
as prefix, ρ can be extended to an infinite play whose labelling is ν;

3. the set of positions of Player 2 is the set of positions labelled by proposition ∀.

In the following, let G = (V,E, Vι, vι, µ) be the arena of Lemma 14. Note that in
a position labelled by ∀, Player 2 chooses between a next position labelled with L and
one labelled with R, hence she simulates the universal choices of M; similarly Player 1
simulates the existential choices. Moreover, by Properties 1–3 of Lemma 14, we easily
obtain the following.

Remark 3. M accepts α iff Player 1 has a strategy σ in G such that for all π ∈ Out(σ),
the content of µ(π) is a well-formed, fair and accepting TM computation code.

Construction of the finite-state transducer T in Proposition 15. Let ρ be a finite
play of G and 1 ≤ h ≤ k. We say that ρ is not tagged if each position along ρ is not labelled
by the extra symbols in {inc,=}. Moreover, we say that ρ is a (h,=)-tagged (resp.,
(h, inc)-tagged) play if exactly two positions along ρ are labelled by some proposition
in {=, inc}, this proposition is = (resp., inc), and these two positions correspond to
the initial positions of two h-blocks along ρ. Additionally, for a (h, inc)-tagged play,
we require that the two tagged h-blocks are adjacent. Assuming that the two tagged
h-blocks bl1 and bl2 are well-formed, then the tag = is used to check that bl1 and bl2
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have the same index, while the tag inc is used to check that the indices of bl1 and bl2 are
consecutive (i.e, bl1 is not final and the index of bl2 is the index of bl1 plus one).

A ; -propositional FL; formula contains only modality ; , boolean connectives,
and atomic propositions. Let U be the universe of G. Note that since Vι is a singleton
(Lemma 14), U is a tree. For a transducer T , a finite play ρ of G, and a FL; state
formula ϕ, we write ρ |= ϕ to mean that U , ρ |= ϕ with relation [T ]. Note that if ϕ is
; -propositional, then for each strategy σ of G and ρ ∈ tσ, tσ, ρ |= ϕ iff U , ρ |= ϕ.

The core result in the proposed reduction is represented by the following lemma.

Lemma 15. One can construct in time polynomial in n and the size of the TMM a syn-
chronous finite-state transducer T over 2AP such that there are two fixed ; -propositional
FLk+1

; formulas ϕconf and ϕfair over {good}, and for all 1 ≤ h ≤ k, three fixed ; -
propositional FLh; formulas ϕh=, ϕhinc, and ϕhbl over {good} so that the following holds.

1. Let ρ be an (h,=)-tagged finite play of G. If the two tagged h-blocks bl1 and bl2 of
ρ are well-formed, then ρ |= ϕh= iff bl1 and bl2 have the same index.

2. Let ρ be an (h, inc)-tagged finite play of G. If the two tagged h-blocks bl1 and bl2
of ρ are well-formed and bl1 precedes bl2, then ρ |= ϕhinc iff the indices of bl1 and
bl2 are consecutive.

3. Let ρ be a non-tagged finite play ρ of G leading to an h-block bl. If each sub-block
of bl is well-formed, then ρ |= ϕhbl iff bl is well-formed.

4. Let ρ be a non-tagged finite play of ρ leading to a TM configuration code – code –
followed by either an ∃-position or a ∀-position. Then, if each k-block of code is
well-formed, ρ |= ϕconf iff code is well-formed.

5. Let ρ be a non-tagged finite play of G having a suffix whose content has the form
code · Q · dir · code ′, where Q ∈ {∃,∀}, dir ∈ {L,R}, and code and code ′ are two
TM configuration codes associated with two TM configurations C and C ′. If code
and code ′ are well-formed, then ρ |= ϕfair iff C ′ is the dir-successor of C.

Proof sketch: The main idea, for each point, is to decompose the verification of a
property in layers implementable with polynomially many states in the transducer, and
invoking other layers thanks to the ; quantifier. We illustrate this by sketching the
idea of the construction for point 1. When it reads a (h,=)-tagged play ρ for h > 1, the
transducer outputs a (h−1,=)-tagged play with same content as ρ: for each =-tagged h-
block in ρ it nondeterministically tags one (h−1)-sub-block with = and checks that these
sub-blocks have the same content, in which case it tags the last position of the output
with good. It just remains to ask for the (h − 1)-sub-blocks tagged with = to have the
same content if they have same index, which is done by letting ϕh= := ; (ϕh−1

= → good).
For h = 1 the transducer directly guesses an index 1 ≤ j ≤ n and verifies that the j − th
bit is the same in both =-tagged block, and we let ϕ1

= = ; good. This behavior can be
implemented with a number of states polynomial in n and the size of M.

Construction of the fixed FLk+1
; formula ϕ in Proposition 15 and proof of

Proposition 15. Let T be the synchronous finite-state transducer and ϕconf, ϕfair, ϕ
1
bl,

. . ., ϕkbl be the fixed ; -propositional FLk+1
; formulas satisfying Lemma 15. Then, the

fixed FLk+1
; formula ϕ is given by ϕ := Aψ, the path formula ψ being defined as follows,

where ϕ′ := $1 ∨ . . . ∨ $k ∨ $ ∨ $acc:
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ψ :=

G
(
¬inc ∧ ¬ =

)
∧ GF($ ∨ $acc)︸ ︷︷ ︸

the infinite play corresponds to a non-tagged TM computation code

∧
k∧
h=1

G(($h ∧Xϕ′)→ ϕhbl) ∧ G((∃ ∨ ∀)→ ϕconf)︸ ︷︷ ︸
the TM computation code is well-formed

∧
G
(
(∃ ∨ ∀) → XG(X(∃ ∨ ∀)→ ϕfair)

)︸ ︷︷ ︸
the well-formed TM sequence code is fair

∧
F $acc︸ ︷︷ ︸

the fair well-formed TM computation code is accepting

By Remark 3 and Lemma 15, it easily follows that M accepts α iff Player 1 has a
([T ],Aψ)-uniform strategy in G, which proves Proposition 15.

7. Extensions

We generalize our language to different relations, we show how to combine the tech-
niques developed for strictly-uniform and fully-uniform strategies, and we discuss some
consequences of our results on the model checking problem for logics of knowledge and
time. Because for n = 0 the language that we consider collapses to CTL∗, we generalise
our setting to n relations with n ≥ 1.

7.1. Generalization to n relations

For n ≥ 1, the set of well-formed nL; formulas is:

State formulas: ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Aψ | ;iϕ | ; iϕ

Path formulas: ψ ::= ϕ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ,

where p ∈ AP and i ∈ {1, . . . , n}.
The models now include one relation ;i for each pair of quantifiers ;i, ; i. The

semantics of formulas ;iϕ or ; iϕ becomes – given a family of relations {;i}1≤i≤n, a
universe U , a 2AP -labelled tree t and a node x ∈ t:

• t, x |= ;iϕ if for all y ∈ t such that x ;i y, t, y |= ϕ

• t, x |= ; iϕ if for all y ∈ U such that x ;i y, Uy, y |= ϕ

Definition 19. For n ≥ 1, let SnL; and FnL; be the sublanguages of nL; that
use only one kind of quantifier: respectively, ;i quantifiers and ; i quantifiers. We call
nSUS, nSUSRec, nFUS, nFUSk and nFUSK45NM the natural adaptations of (respectively)
SUS,SUSRec,FUS,FUSk and FUSK45NM to the case of uniformity constraints in nL;.

Theorem 5. nSUS is undecidable and nSUSRec is 2-Exptime-complete.
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Proof. Because SUS is an undecidable subproblem of nSUS, nSUS is also undecidable.
For the 2-Exptime membership of nSUSRec, observe that all the results on jumping tree
automata established in Section 5 generalize to the case of n relations. In particular, for a
jumping tree automaton A equipped with a family of recognizable relations {;i}1≤i≤n,
there is an equivalent two-way automaton of size O(|A| ·

∑n
i=1 |Bi|). This automaton

works as described in the proof of Proposition 6: when it starts to simulate a jump for
relation ;i it triggers the associated recognizer Bi. The 2-Exptime-hardness of SUSRec

extends to nSUSRec.

Theorem 6. nFUSk is k-Exptime-complete for k ≥ 2, 2-Exptime-complete otherwise.

Proof. The lower bounds are directly inherited from FUSk. For the upper bound, we
explain informally how to adapt the construction in Section 6.3. From each trans-
ducer Ti (recognizing relation ;i), build the associated information set automaton ATi ,
and synchronize the arena G with AT1 , . . . ,ATn . This gives a powerset arena of size

2(|G|+|T1|+...+|Tn|)O(1)

in which each innermost subformula of the form ; iϕ can be evalu-
ated positionally, using the information computed by ATi . The rest of the proof is similar
to the case of one relation.

Corollary 5. nFUS is nonelementary.

So far, generalizing to n relations does not change the decidability/complexity of the
different problems we introduced. Concerning nFUSK45NM, the fully-uniform strategy
problem for K45NM relations, allowing for several relations raises the complexity from
2-Exptime-complete to nonlementary. However the complexity is still better than for
the case of arbitrary rational relations, as the height of the tower of exponentials is
determined by the number of alternations between quantifiers for different relations in
the formula, instead of the total ; -depth. We inductively define the alternation depth
of a formula ϕ ∈ FnL;, noted ad(ϕ), as follows:

ad(p) = 0 ad(¬ϕ) = ad(ϕ) ad(ϕ ∨ ϕ′) = max(ad(ϕ), ad(ϕ′))
ad(Aψ) = ad(ψ) ad(Xψ) = ad(ψ) ad(ψUψ′) = max(ad(ψ), ad(ψ′))

ad( ; iϕ) = 1 + max{ad( ; jϕ
′) | ; jϕ

′ ∈ Sub(ϕ) and i 6= j}

Definition 20. For n ≥ 1 and h ≥ 0, nFUShK45NM is the restriction of nFUSK45NM to
FnL; formulas of alternation depth at most h.

Theorem 7. nFUShK45NM is h-Exptime-complete if h ≥ 2, otherwise it is 2-Exptime-
complete.

Proof. For the upper bound it is relatively easy to see how the elementary procedure for
FUSK45NM can be adapted. Roughly speaking, using the fact that for each relation ;i

two related paths take the information set automaton ATi in information-set bisimilar
states, one can evaluate on the first powerset arena all subformulas of the form ; iϕ as
long as there is no alternation. Then, in order to evaluate positionally formulas of the
form ; jϕ where ϕ contains a fresh proposition of the form p ; iϕ′ with i 6= j, a new
powerset construction is needed. Iterating the process gives the desired upper bounds.

For the lower bounds, the construction presented for FUS in Proposition 15 (Page 31)
can be adapted. The behaviour of the transducer T built in the proof of Lemma 15
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(Page 34) shows that the relation it recognizes is not in K45NM. First, we describe how
to obtain K45NM relations by alternating between two transducers that each recognize
a transitive and Euclidean relation. To do so, we make each transducer label its outputs
with a special atomic proposition that identifies the transducer that produced the output.
Say that the first transducer, T0, uses pT0

and T1 uses pT1
. First, observe that an input ρ

labelled by some pTi has necessarily been output by Ti on some input ρ′, and furthermore
a transducer reading ρ can “know” exactly what was this ρ′. Indeed, the contents of ρ
and ρ′ are the same, and we can add finitely many atomic propositions to mark on an
output what was the kind of the input (there are but a finite number of different kinds of
plays). Therefore we can let Ti behave on a pTi-tagged play ρ as it would have behaved
on the input ρ′ that originated ρ. This ensures that on a given input of Ti, all the outputs
are related together, so that [Ti] is transitive and Euclidean. On a play that is tagged
by neither pT0 nor pT1 , Ti just behaves normally and tags the outputs with pTi . On
plays tagged with pT1−i , Ti does the same, but in addition it removes the tag pT1−i . In
the formulas built in the proof, we alternate between full quantifiers for each transducer,
such that each Ti always receives as input a play that is not tagged with pTi , and it
therefore behaves normally.

Now, making the relations verify the No Miracles property can be done by adding
loops on accepting states of the transducers with labels a/a for each a in the alphabet but,
as a side effect, insignificant related plays are added. This issue can however be dealt
with by adding two new atomic propositions, valid0 and valid1, used by transducers
to signal which related plays are relevant and which ones are added to achieve the No
Miracles property. More precisely, when Ti reads a partial play, in addition to its normal
behaviour (described above) it also marks each position in the output with validi, except
in loop transitions added for the No Miracles property, that still just copy the input.
Making sure that transducer Ti never takes as input a word already marked with validi
ensures that the relevant outputs of Ti and only them are marked with validi. This is
achieved by letting each transducer erase the marker of the other, by relativising the
; i-quantifications to validi-marked plays, and specifying in the main formula that the
plays in the strategy must be originally unmarked (see Lemma 15).

Corollary 6. nFUSK45NM is nonelementary.

7.2. Mixing strict and full quantifiers

The fact that nL; allows for quantifiers over different relations (when n > 1) makes
it possible to define a relevant class of uniformity constraints that combine strict and full
quantifiers. To give the idea, consider an L; formula ϕ that contains no strict quantifier
in the scope of a full quantifier. This means that if ; iϕ

′ ∈ Sub(ϕ), then there is no
formula of the form ;jϕ

′′ in Sub(ϕ′), for any j. If the relations attached to the full
quantifiers in ϕ are rational, then we can iterate powerset constructions and subformula
elimination of Section 6.3 to remove all full quantifiers. Recall that there is a bijection
between plays in an arena and plays in its powerset construction. Because this bijection
preserves relations, the truth of strict quantifiers is also preserved between a tree of the
original arena and a tree of the powerset arena. Therefore, eliminating the full quantifiers
yields an equivalent instance of nSUS. This instance can in turn be solved using jumping
tree automata, provided the relations attached to the strict quantifiers are recognizable.
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We let SFnL; be the set of formulas in nL; such that there is no strict quantifier
in the scope of a full quantifier. For example, AG ; 2q ∈ SFnL;, ;1EF ; 2 ; 1p ∈
SFnL;, but ; 1AX ;2p /∈ SFnL;.

Definition 21. For n ≥ 1, nSFUS is the uniform strategy problem for uniformity prop-
erties in SFnL; such that if ;i appears in the formula, ;i is a recognizable relation
given by its recognizer B;i

, and if ; i appears in the formula, ;i is a rational relation
given by a transducer Ti.

We generalize the notions of nesting depth and alternation depth to SFnL; formulas
by simply ignoring the strict quantifiers. We also define the following problems: nSFUSk
is the restriction of nSFUS to formulas of nesting depth at most k, nSFUSK45NM is the
restriction of nSFUS to the case where the transducers recognize K45NM relations, and
nSFUShK45NM restricts nSFUSK45NM to formulas of alternation depth at most h.

The following results are obtained by combining the complexity results previously
established for strictly and fully-uniform strategies. For the upper-bounds, the decision
procedures consist in piping the ones for fully-uniform strategies (quantifier elimination)
with the one for strictly-uniform strategies (jumping automata). Observe in particular
that, as established in the proof of Theorem 2, our decision procedure to solve the
strictly-uniform strategy problem runs in time doubly exponential in the size of the
formula, but only polynomial in the size of the arena. For this reason, the two first
powerset constructions do not impact the overall complexity.

Theorem 8. nSFUSk is k-Exptime-complete for k ≥ 2, otherwise it is 2-Exptime-
complete.

Corollary 7. nSFUS is nonelementary.

Theorem 9. For n = 1, nSFUShK45NM is 2-Exptime-complete for all h. For n > 1,
nSFUShK45NM is h-Exptime-complete for h ≥ 2, 2-Exptime-complete otherwise.

Corollary 8. For n > 1, nSFUSK45NM is nonelementary. Otherwise it is 2-Exptime-
complete.

7.3. Related work

We first point out two results from the literature on logics of knowledge and time
that are direct corollaries of our results on uniform strategies.

Theorem 10 (van der Meyden and Shilov (1999)). Model-checking LTLKn with syn-
chronous perfect-recall is decidable.

Theorem 11 (Dima (2008)). Model-checking CTLKn with synchronous perfect-recall is
decidable.

Because our base language is CTL∗ and synchronous perfect-recall relations are in
K45NM, both problems are easily reduced to nFUSK45NM. Let M be a model and ϕ
a formula of either LTLKn or CTLKn. Each uncertainty relation ∼i is induced by an
equivalence relation on states of the model. A transducer Ti with one state q which has
a transition q−[s/s′]→ q whenever states s and s′ ofM have the same observation clearly
recognizes ∼i. Being an equivalence relation, ∼i clearly is in K45, and one easily checks
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that it verifies the No Miracles property. Then, one simply sees the modelM as an arena
whose positions all belong to Player 2. Then Player 1 has only one trivial strategy, and
all possible runs in the model are in the outcome. So ϕ is true in the model if and only
if the only trivial strategy of Player 1 is ({[Ti]}1≤i≤n, ϕ)-uniform.

The algorithms given in van der Meyden and Shilov (1999) and Dima (2008) are in
k-Expspace for formulas of knowledge nesting depth k. Our results improve this upper
bound: Theorem 7 gives an h-Exptime upper-bound, where h is the alternation depth
of the formula instead of the total nesting of knowledge quantifiers. Note that for h = 1
we manage to obtain an Exptime upper-bound instead of the 2-Exptime one we have
for nFUS1

K45NM. This is because the automaton AG that recognizes the strategy trees of
Player 1 in the above reduction is trivial as Player 1 never plays. In fact we can combine
this automaton with the hesitant alternating automaton AΦ̂ that accepts models of the
final CTL∗ formula, the automaton we obtain is still hesitant, and its emptiness can be
tested in linear time (Kupferman et al., 2000). AΦ̂ being of size exponential in |Φ|, the
result follows. In fact we have the following general result:

Theorem 12. Model-checking CTL∗Kn with rational epistemic relations on runs is in
k-Exptime, where k is the modal depth of the formula. If, in addition, the epistemic
relations verify transitivity, Euclideanity and No Miracles, then the problem is in h-
Exptime, where h is the alternation depth of the formula. K45NM relations include,
e.g. synchronous and asynchronous perfect-recall relations.

Note that the same upper-bounds for asynchronous perfect recall and distributed
knowledge have also been proved by Aucher (2013).

Uniform strategies also naturally capture the synthesis problem from knowledge-based
specifications, as addressed in van der Meyden and Vardi (1998) or van der Meyden and
Wilke (2005). The knowledge operators in this framework have – to use the vocabu-
lary of uniform strategies – strictly-uniform semantics: the system in which formulas
are interpreted is restricted to behaviors that are induced by the protocol/strategy they
synthesize. van der Meyden and Vardi (1998) establish that the case of one agent with
synchronous perfect-recall is decidable; because perfect-recall relations are not recogniz-
able relations, this result indicates that there should be a class of relations other than
Rec for which the strictly-uniform strategy problem is decidable. On the other hand,
when more than one agent are involved the synthesis problem for knowledge-based spec-
ifications is undecidable; yet it is well known that making additional assumptions on
information flows yields decidable cases. For instance van der Meyden and Wilke (2005)
establish that the problem is decidable in broadcast environments, where information
flows between players by means of public broadcasts only. This also suggests that there
should be relations not in Rec for which, under some assumptions on the connections
between relations for each quantifier ;i, nSUS is decidable. It would be very interesting
to identify for which class of relations and which constraints on their inter-connections
this result holds.

8. Conclusion

We have generalized the framework proposed by Maubert and Pinchinat (2014) by
extending the theory from linear-time to branching-time, and we have studied in depth
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the decidability and complexity of uniform strategy synthesis for both kinds of quantifiers
– the strict one and the full one – and various subclasses of rational relations. We then
have generalized the theory by allowing for several relations, and for each result of the
single-relation case we have established its counterpart in the multiple-relation setting.

The results concerning strictly-uniform strategies shed light on phenomena in games
with imperfect information. While observation-based strategies require the player to
play identically in observationally equivalent plays, the notion of knowledge-based strat-
egy asks the player to play identically in all situations that yield the same information
set. Although being rational, the observation-based equivalence relation is not recogniz-
able, unlike the information-set-based equivalence relation. Interestingly, in two-player
games with ω-regular objectives, the existence of an observation-based strategy implies
the existence of an information-set-based strategy, hence looking for the latter is enough;
but this no longer holds for more players. We believe that our results (on undecidabil-
ity/decidability), by distinguishing arbitrary rational relations from recognizable ones,
give a new insight on the frontier between imperfect-information games with at most two
players and games with more than two players.

About imperfect-information games where players have bounded memory instead of
perfect recall, they are clearly decidable for ω-regular objectives as only finitely many
strategies are available for each player. Still, because indistinguishability relations for
bounded-memory agents are recognizable, uniform strategies and jumping tree automata
provide a well-suited tool to solve such games, and also allow for arbitrary epistemic tem-
poral winning conditions. Note also that recognizable relations do not need to be equiv-
alence relations in general; our results thus allow for more involved indistinguishability
relations, for modelling e.g. beliefs and plausibility. In order to handle richer strictly-
uniform properties, and thus players with capacities more powerful than just bounded
memory, we seek for a class of relations for which jumping tree automata languages would
exceed the line of ω-regularity, and still enjoy a decidable emptiness problem.

To finish with jumping tree automata, we want to study their relationship with RLµ,
i.e. the extension of the full µ-calculus with the ; quantifier. We conjecture that, just like
classic tree automata correspond exactly to the modal µ-calculus, jumping tree automata
correspond to RLµ, but further investigation is required.

On the other hand, our results concerning fully-uniform strategies provide a unified
proof of several existing results in the domain of model-checking logics of knowledge and
time with various observational powers of agents. In addition, our generic result settles
the matter for any new type of capabilities that one would be led to consider, as long as
the induced relations are rational.

Also, we believe that the notion of information set automaton could lead to a generic
powerset-construction for solving two-player games with imperfect information and ra-
tional relations, which would capture both the classic one of Reif (1984) for synchronous
perfect recall and the recent generalization to asynchronous perfect recall by Puchala
(2010). This may allow us to solve a potentially vast class of games with imperfect
recall, the relevance of which has recently been advocated in Berwanger et al. (2012).

Finally, the notion of uniform strategy generalizes to the case of concurrent game
structures, and investigating which results are preserved is yet another interesting per-
spective, as well as possible extensions to strategy logics with quantifiers over uniform
strategies. This would generalize existing approaches, and may provide a clean setting to
address questions of strategy context (see Lopes et al. (2010)) with imperfect information.
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Löding, C., 2014. Automata on infinite trees, in: Pin, J.E. (Ed.), preliminary version for the handbook

Automata: from Mathematics to Applications. To appear.
Lopes, A.D.C., Laroussinie, F., Markey, N., 2010. Atl with strategy contexts: Expressiveness and model

checking, in: Lodaya, K., Mahajan, M. (Eds.), FSTTCS, Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik. pp. 120–132.

Maubert, B., 2014. Logical foundations of games with imperfect information: uniform strategies. Ph.D.
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