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Abstract

We consider turn-based game arenas for which we investigate uniformity properties of strategies. These
properties involve bundles of plays, that arise from some semantical motive. Typically, we can represent
constraints on allowed strategies, such as being observation-based. We propose a formal language to specify
uniformity properties and demonstrate its relevance by rephrasing various known problems from the liter-
ature. Note that the ability to correlate different plays cannot be achieved by any branching-time logic if
not equipped with an additional modality, so-called R in this contribution. We also study an automated
procedure to synthesize strategies subject to a uniformity property, which strictly extends exitsting results
based on, say standard temporal logics. We exhibit a generic solution for the synthesis problem provided
the bundles of plays rely on any binary relation definable by a finite state transducer. This solution yields
a non-elementary procedure.

1 Introduction

In extensive (finite or infinite duration) games, the arena is represented as a graph whose vertices denote positions
of players and whose paths denote plays. In this context, a strategy of a player is a mapping prescribing to
this player which next position to select provided she has to make a choice at this current point of the play.
As mathematical objects, strategies can be seen as infinite trees those of which are obtained by pruning the
infinite unfolding of the arena according to the selection prescribed by this strategy; outcomes of a strategy are
therefore the branches of the trees.

Strategies of players are not arbitrary in general, since players aim at achieving some objectives: in classic
game theory with finite-duration plays, the reasonable rationality assumption leads players to play in such a way
that they maximize their pay-off. More recently, (infinite-duration) game models have been intensively studied
for their applications in computer science [AG11] and logic [GTW02]. First, infinite-duration games provide
a natural abstraction of computing systems’ non-terminating interaction [AHK02] (think of a communication
protocol between a printer and its users, or control systems). Second, infinite-duration games naturally occur as
a tool to handle logical systems for the specification of non-terminating behaviors, such as for the propositional
µ-calculus [EJ91], leading to a powerful theory of automata, logics and infinite games [GTW02] and to the
development of algorithms for the automatic verification (“model-checking”) and synthesis of hardware and
software systems.

Additionally, the cross fertilization of multi-agent systems and distributed systems theories has led to equip
logical systems with additional modalities, such as epistemic ones, to capture uncertainty [Sat77, Leh84, FHV91,
PR85, LR86, HV89], and more recently, these logical systems have been adapted to game models in order to
reason about knowledge, time and strategies [vdHW03, JH04, DEG10]. The whole picture then becomes
intricate, mainly because time and knowledge are essentially orthogonal, yielding a complex theoretical universe
to reason about. In order to understand to which extent knowledge and time are orthogonal, the angle of view
where strategies are infinite trees is helpful: Time is about the vertical dimension of the trees as it relates to
the ordering of encountered positions along plays (branches) and to the branching in the tree. On the contrary,
Knowledge is about the horizontal dimension, as it relates plays carrying, e.g., the same information.

As far as we know, this horizontal dimension, although extensively studied when interpreted as knowledge or
observation [AVW03, vdHW03, JH04, Ben05, PR05, CDHR06, AČC07, DEG10], has not been addressed in its
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generality. In this paper, we aim at providing a unified setting to handle it. We introduce the generic notion of
uniformity properties and associated so-called uniform strategies (those satisfying uniformity properties). Some
notions of “uniform” strategies have already been used, e.g., in the setting of strategic logics [VB01, Ben05, JH04]
and in the evaluation game of Dependence Logic [Vää07], which both fall into the general framework we present
here.

We have chosen to tell our story in a simple framework where games are described by two-player turn-
based arenas in which all information is put inside the positions, and not on the edges. However, the entire
theory can be adapted to more sophisticated models, e.g. with labels on edges, multi-players, concurrent games,
. . . Additionally, although uniformity properties can be described in a set-theoretic framework, we have chosen
to use a logical formalism which can be exploited to address fundamental automated techniques such as the
verification of uniformity properties and the synthesis of uniform strategies – arbitrary uniformity properties
are in general hopeless for automation. The formalism we use combines the Linear-time Temporal Logic LTL
[GPSS80] and a new modality R (for “for all related plays”), the semantics of which is given by a binary relation
between plays. Modality R generalizes the knowledge operator K of [HV89] for the epistemic relations of agents
in Interpreted Systems. The semantic binary relations between plays are very little constrained: they are not
necessarily equivalences, to capture, e.g. plausibility (pre)orders one finds in doxastic logic [Hin62], neither are
they knowledge-based, to capture particular strategies in games where epistemic aspects are irrelevant. Formulas
of the logic are interpreted over outcomes of a strategy. The R modality allows to universally quantify over
all plays that are in relation with the current play. Distinguishing between the universal quantification over all
plays in the game and the universal quantification over all the outcomes in the strategy tree yields two kinds of
uniform strategies: the fully-uniform strategies and the strictly-uniform strategies.

As announced earlier, we illustrate the suitability of our notions by borrowing many frameworks from the
literature: strategies for games with imperfect information, games with opacity conditions, the non-interference
properties of computing systems, diagnosability of discrete-event systems (with a proposal for a formal definition
of prognosis), and finally the evaluation game for Dependence Logic. Proofs of Section 3 are omitted due to
lack of space, but they are quite simple. Through these examples we show that both notions, strict uniformity
and full uniformity, are relevant and incomparable. These examples also demonstrate that defining uniformity
properties with our formal language is convenient and intuitive. There are even more instances of uniform
strategies in the literature, but the numerous examples we give here are already convincing enough to justify
the relevance of the notion.

Next we turn to the automated synthesis of uniform strategies. For this purpose, we unsurprisingly re-
strict to finite arenas and to binary relations between plays that are finitely representable: we use finite state
transducers [Ber79], an adequate device to characterize a large class of binary relations between sequences of
symbols, hence they can be used to relate sequences of positions, i.e. plays. Incidentally, all binary relations that
are involved in the relevant literature seem to follow this restriction. In this context, we address the problem
of the existence of a fully-uniform strategy : “given a finite arena, a finite state transducer describing a binary
relation between plays, and a formula expressing a uniformity property, does there exist a fully-uniform strategy
for Player 1?”. We prove that this problem is decidable by designing an algorithm. This algorithm involves
a non-trivial powerset construction from the arena and the finite state transducer. This construction needs
being iterated a number of times that matches the maximum number of nested R modalities in the formula
specifying the uniformity property. As each powerset construction is computed in exponential time, the overall
procedure is non-elementary. Regarding the decision problem for the existence of a strictly-uniform strategy,
its decidability is an open problem.

The paper is organized as follows. in Section 2 we set the mathematical framework: we introduce the notion
of uniform strategies and we present the formal language to specify uniformity properties. Next, in Section 3, we
expose a significant set of six instances of uniform strategy problems from the literature. Section 4 is dedicated
to a short reminder about finite state transducers that are used in the strategy synthesis problem addressed
and solved in Section 5. We finish by a discussion on the work done and perspectives in Section 6.
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2 Uniform strategies

In this section we define a very general notion of uniform strategies. We consider two-player turn-based games
that are played on graphs with vertices labelled with propositions.These propositions represent the relevant
information for the uniformity properties one wants to state. If the game models a dynamic system interacting
with its environment, relevant information can be the value of some (Boolean) variables. If it models agents
interacting in a network, interesting information can be the state of the communication channels. In games
with imperfect information, it can be what action has just been played.

From now on and for the rest of the paper, we let AP be an infinite set of atomic propositions.

An arena is a structure G = (V,E, vI , `) where V = V1 ] V2 is the set of positions, partitioned between
positions of Player 1 (V1) and those of Player 2 (V2), E ⊆ (V1×V2)∪ (V2×V1) is the set of edges, vI ∈ V is the
initial position and ` : V → P(AP ) is a valuation function, mapping each position to the finite set of atomic
propositions that hold in this position.

For v ∈ V , Tracesω(v) ⊆ vV ω is the set of infinite traces starting in v, i.e. the set of infinite paths v0v1v2 . . .
in the game graph (V,E), with v0 = v, and similarly Traces∗(v) ⊆ vV ∗ is the set of finite traces starting in v,
i.e. the set of finite paths v0v1 . . . vn in (V,E), with v0 = v and n ≥ 0. We let Tracesω = ∪v∈V Tracesω(v) and
Traces∗ = ∪v∈V Traces∗(v). Typical elements of Tracesω are π, π′, and λ, λ′ are typical elements of Traces∗.
Playsω denotes Tracesω(vI) and Plays∗ denotes Traces∗(vI), respectively the set of infinite and finite plays
in the game. We shall write ρ instead of λ to distinguish finite plays from other finite traces.

For an infinite trace π = v0v1 . . . and i, j ∈ N, π[i] := vi, π[i,∞] := vivi+1 . . . ∈ Tracesω and π[i, j] :=
vi . . . vj ∈ Traces∗. We will use similar notations for finite traces, and |.| : Traces∗ ∪ Tracesω → N ∪ {ω}
denotes the length of the trace. If λ ∈ Traces∗, we let last(λ) := λ[|λ| − 1] be the last position of λ.

A strategy for Player k, k ∈ {1, 2}, is a partial function σ : Plays∗ → V that assigns the next position to
choose in every situation in which it is Player k’s turn to play. In other words σ(ρ) is defined if last(ρ) ∈ Vk.
Let σ be a strategy for Player k. We say that a play π ∈ Playsω is induced by σ if for all i ≥ 0 such that
π[i] ∈ V1, π[i + 1] = σ(π[0, i]), and the outcome of σ, noted Out(σ) ⊆ Playsω, is the set of all infinite plays
that are induced by σ.

We want to express properties of strategies that do not concern only single traces but rather sets of correlated
traces. We first give a very abstract definition.

Definition 1 Let G be an arena. A uniformity property U ⊆ P(Playsω) is a set of sets of plays in G.

Definition 2 Let G be an arena and U a uniformity property. A strategy σ is U -uniform if Out(σ) ∈ U .

This definition gives an idea of the notion we want to capture, but first this set-theoretic definition is not very
intuitive, and moreover it is so expressive that automatically handling this notion in its generality is hopeless.
We therefore restrict the notion of uniform strategy by fixing a formal language to specify uniformity properties.
As demonstrated in the next section, the language is powerful enough to capture plethora of instances from the
literature.

The proposed language enables to express properties of the dynamics of plays, and resembles the Linear
Temporal Logic (LTL) [GPSS80]. However, while LTL formulas are evaluated on individual plays (paths), we
want here to express properties on “bundles” of plays. To this aim, we equip arenas with a binary relation
between finite plays, and we enrich the logic with a modality R that quantifies over related plays: the intended
meaning of Rϕ is that ϕ holds in every related play.

For the general presentation of the logic, we do not make yet assumptions concerning the binary relation
over plays, as opposed to Section 5 dedicated to decidability issues.

We now give the syntax and semantics of the language L.
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2.1 Syntax

The syntax of the language L is the following :

L : ϕ,ψ ::= p | ¬ϕ | ϕ ∧ ψ | #ϕ | ϕ U ψ | Rϕ

where p is in AP . As usual we will use the following notations : true := p ∨ ¬p, false := ¬true, Fϕ :=
true U ϕ, Gϕ := ¬F¬ϕ, and ϕWψ := ϕ U ψ ∨Gϕ. In addition we will use the following notation: 〈R〉ϕ :=
¬R¬ϕ, and for a formula ϕ ∈ L, Sub(ϕ) denotes the set of all its subformulas.

The syntax of L is similar to that of linear temporal logic with knowledge [HV89]. However, we use R
instead of the usual knowledge operator K to emphasize that though it has a strong epistemic flavour, notably
in various application instances we present here, it need not be interpreted in terms of knowledge in general,
but merely as a way to state properties of bundles of plays.

Definition 3 For a formula ϕ ∈ L, we define the R-depth of ϕ, denoted dR(ϕ), as the maximum number of
nested R modalities in ϕ. For n ≥ 0, let Ln = {ϕ ∈ L | dR(ϕ) = n} be the set of formulas of R-depth n.

We note LTL the language L0 as it matches the syntax (and also the semantics) of the Linear-time Temporal
Logic of [GPSS80].

2.2 Semantics

To give the semantics of L we take an arena G = (V,E, vI , `) and a relation ; ⊆ Plays∗ × Plays∗. A formula
ϕ of L is evaluated at some point i ∈ N of a trace π ∈ Playsω, within a universe Π ⊆ Playsω. The semantics
is given by induction over formulas.

Π, π, i |= p if p ∈ `(π[i])
Π, π, i |= ¬ϕ if Π, π, i 6|= ϕ
Π, π, i |= ϕ ∧ ψ if Π, π, i |= ϕ and Π, π, i |= ψ
Π, π, i |= #ϕ if Π, π, i+ 1 |= ϕ
Π, π, i |= ϕ U ψ if there is j ≥ i such that Π, π, j |= ψ and for all i ≤ k < j, Π, π, k |= ϕ
Π, π, i |= Rϕ if for all π′ ∈ Π, j ∈ N such that π[0, i] ; π′[0, j], Π, π′, j |= ϕ

The LTL part is classic. Rϕ is true at some point of a trace if ϕ is true in every related finite trace in the
universe.

We will sometimes need to evaluate an LTL-formula ϕ in a position v of an arena, with the classic semantics
that ϕ holds in v if it holds in every trace starting in v.

Formally, for an arena G = (V,E, vI , `), a position v ∈ V and a formula ϕ ∈ LTL, we write

G, v |= ϕ if π, 0 |= ϕ for all π ∈ Tracesω(v)

Here we can omit Π because the formula has no R modality.

Definition 4 Given an arena G = (V,E, vI , l), a uniformity property is a pair (;, ϕ) where ; is a relation
over Plays∗ and ϕ ∈ L is a formula.

Now we define two notions of uniform strategies, which differ only in the universe the R modality quantifies
over: Out(σ) or Playsω (with the latter, related plays not induced by the strategy also count). As we shall see
in the examples of the next section, making a nuance is worthwhile.

Definition 5 Let G be an arena and (;, ϕ) be a uniformity property. A strategy σ for Player 1 is

• (;, ϕ)-strictly-uniform if for all π ∈ Out(σ), Out(σ), π, 0 |= ϕ.

• (;, ϕ)-fully-uniform if for all π ∈ Out(σ), Plays∗, π, 0 |= ϕ.
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The notion of fully-uniform strategy is in a sense weaker than the strictly-uniform one. Indeed, the fact
that a particular play in an arena verifies a formula ϕ in the fully-uniform semantics, i.e. with Playsω and not
Out(σ) as a universe, is independent of the strategy. Hence in the general definition of uniform strategies, a
uniformity property U could be defined to be a set of plays instead of a set of sets of plays, and a strategy σ could
be said to be uniform if Out(σ) ⊆ U instead of Out(σ) ∈ U , it would still contain the notion of fully-uniform
strategies. Strictly-uniform strategies could no longer fit in this definition though, as deciding whether a play
verifies a formula in this semantics cannot be done without knowing the strategy. In this sense, strict uniformity
is “stronger” than full uniformity. However, the notion of fully-uniform strategies still enables to characterize
tree languages that are not even µ-calculus definable: indeed, as observed by [AČZ06], given a infinite tree,
Property (*) that at every depth d > 0, there exist two nodes, one of which being labeled by, say p, and one of
which not being labeled by p, cannot be ω-regular (a pumpimg lemma argument suffices). Hence this property
cannot be defined by any µ-calculus formula. However, we are able to characterize arenas whose tree unfolding
has this property: consider the equivalence relation =length which relates plays with equal length. One easily
sees that the existence of a (=length,G(〈R〉p ∧ 〈R〉¬p))-fully-uniform strategy is equivalent to say that the tree
unfolding of the arena has Property (*).

Remark also that the relation ; plays no role in Definition 5 if ϕ does not contain any R operator, hence
it is a mere LTL formula. Notice that in this latter case, some standard ω-regular (winning) conditions can be
expressed over plays. The extension to a more powerful logic, such as the full propositional µ-calculus, in order
to capture all ω-regular properties is a priori possible. However, for the examples considered in Section 3 this
full power is not needed.

3 Frameworks from the literature

In this section we demonstrate that the notion of uniform strategy of previous Section 2 enables to embed various
problems from the literature, and in particular that it subsumes two existing notions of uniform strategies.

3.1 Games with imperfect information

Games with imperfect information, in general, are games in which some of the players do not know exactly what
is the current position of the game. This can occur in real games, e.g. poker since one does not know what cards
her opponents have in hands, but also in situations arising from computer science, like for example a program
that observes or controls a system by means of a sub-part of its variables, the interface, while other variables
remain hidden. One important aspect of imperfect-information games is that not every strategy is “playable”.
Indeed, a player who has imperfect information cannot follow a strategy in which different moves are chosen
for situations that are indistinguishable to her. This is why strategies are required to choose moves uniformly
over observationally equivalent situations. This kind of strategies is sometimes called uniform strategies in
the community of strategic logics ([VB01, Ben05, JH04]), or observation-based strategies in the community of
computer-science oriented game theory ([CDHR06]).

In games with imperfect information, the player’s ability to remember what happened so far along a play is a
key point to achieve a winning strategy, as opposed to e.g. perfect-information parity games, where memoryless
strategies are sufficient. Moreover in an imperfect information configuration, it is necessary to define what
situations are indistinguishable to the player, and this requires defining how much memory she has of what
occurs in a play. It is therefore relevant under an imperfect information assumption to distinguish the perfect
recall setting, as opposed to the imperfect recall one. In the former, the player remembers the whole history
of the observation she had of a play, no matter how long it is, while in the latter the player forgets a part of
the information. An agent with imperfect information can either be memoryless, i.e. he does not remember
anything and takes his decisions only based on the current position, or have a bounded memory, but this case
can be reduced to the memoryless case by putting the different possible configurations of his memory in the
positions of the arena.

While games with imperfect information and perfect recall have been studied intensively [Rei84, CDHR06,
BD08], the case of imperfect recall has received much less attention since paradoxes concerning the interpretation
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of such games were raised [PR97]. Nonetheless, relevant problems may be modeled with imperfect recall:
typically, particular computing resources have very limited memory and cannot remember arbitrarily long
histories.

In this subsection, we show that the notion of “uniform” or “observation-based” strategy can be easily
embedded in our notion of uniform strategy, and this no matter the assumption made on the memory of the
player.

We first consider two-player imperfect-information games as studied for example in [Rei84, CDHR06, BD08].
In these games, Player 1 only partially observes the positions of the game, such that some positions are indis-
tinguishable to her, while Player 2 has perfect information (the asymmetry is due to the focus being on the
existence of strategies for Player 1). Arenas are labelled directed graphs together with a finite set of actions
Act, and in each round, if the position is a node v, Player 1 chooses an available action a, and Player 2 chooses
a next position v′ reachable from v through an a-labelled edge.

We equivalently define this framework in a manner that fits our setting by putting Player 1’s actions inside
the positions. We have two kinds of positions, of the form v and of the form (v, a). In a position v, when she
chooses an action a, Player 1 actually moves to position (v, a), then Player 2 moves from (v, a) to some v′. So
an imperfect-information game arena is a structure Gimp = (G,∼) where G = (V,E, vI , `) is a two-player game
arena with positions in V1 of the form v and positions in V2 of the form (v, a). For a position (v, a) ∈ V2, we
note (v, a).act := a. E ⊆ V1 × V2 ∪ V2 × V1, vE(v′, a) implies v = v′, vI ∈ V1. We assume that p1 ∈ AP and
for every action a in Act,, pa ∈ AP . p1 holds in positions belonging to Player 1, and pa holds in positions of
Player 2 where the last action chosen by Player 1 is a: `(v) = {p1} for v ∈ V1, `(v, a) = {pa} for (v, a) ∈ V2.
Finally, ∼ ⊆ V 2

1 is an observational equivalence relation on positions, that relates indistinguishable positions
for Player 1. We define its extension to finite plays as the least relation ≈ such that ρ · v ≈ ρ′ · v′ whenever
ρ ≈ ρ′ and v ∼ v′, and ρ · (v, a) ≈ ρ′ · (v′, a′) whenever ρ ≈ ρ′, v ∼ v′ and a = a′.

We add the classic requirement that the same actions must be available in indistinguishable positions: for
all v, v′ ∈ V1, if v ∼ v′ then vE(v, a) if, and only if, v′E(v′, a). In other words, if a player has different options,
she can distinguish the positions.

Definition 6 A strategy σ for Player 1 is observation-based if for all ρ, ρ′ ∈ v(V2V1)∗, ρ ≈ ρ′ implies σ(ρ).act =
σ(ρ′).act.

We define the formula
SameAct := G(p1 →

∨
a∈Act

R#pa)

which expresses that whenever it is Player 1’s turn to play, there is an action a that is played in all equivalent
finite play.

Theorem 1 A strategy σ for Player 1 is observation-based if, and only if, it is (≈, SameAct)-strictly-uniform.

Here we have to make use of the notion of strict uniformity, and not the full uniformity. Indeed, after a
finite play π[0, i] ending in V1, we want to enforce that the actions in the next positions of equivalent plays are
the same only in those plays that are induced by the strategy we consider, and not in every possible play in the
game. This would of course not hold as soon as several choices are possible in π[i].

Also, it is interesting to see that this notion could also be embedded with a simpler formula by using a
relation that is not an equivalence. Define ; as: π[0, i] ; π′[0, j] if π[i] ∈ V1, j = i + 1 and π[0, i] ≈ π′[0, i],
and define the formula:

SameAct’ := G
∨

a∈Act
Rpa.

Then a strategy σ for Player 1 is observation-based if, and only if, it is (;, SameAct’)-strictly-uniform.
In this version, the relation is not reflexive, in particular plays ending in V2 are linked to no play, making Rϕ

trivially true for any ϕ. This is the reason why we no longer need to mark positions of V1 with the proposition
p1 and test whether we are in V1 before we ask for some pa to hold in every reachable position.

Finally, notice that to embed the case of imperfect-recall for example, one would just have to replace ≈ with
the appropriate relation.
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3.2 Games with epistemic condition

Uniform strategies enable to express winning conditions that have epistemic features, the relevance of which is
exemplified by the games with opacity condition studied in [MPB11]. In that case, R can represent a players’
knowledge, or distributed knowledge between a group of players, or common knowledge, depending on the
winning condition one wants to define.

Games with opacity condition are based on two-player imperfect-information arenas with a particular win-
ning condition, called the opacity condition, which relies on the knowledge of the player with imperfect infor-
mation. In such games, some positions are “secret” as they reveal a critical information that the imperfect-
information player wants to know (in the epistemic sense).

More formally, assume that a proposition pS ∈ AP represents the secret. Let Ginf = (G,∼) be an imperfect-
information arena as described in Section 3.1, with a distinguished set of positions S ⊆ V1 that denotes the
secret. Let G = (V,E, vI , `) be the arena with `−1({pS}) = S (positions labeled by pS are exactly positions
v ∈ S). The opacity winning condition is as follows.

The knowledge or information set of Player 1 after a finite play is the set of positions that she considers
possible according to the observation she has: let ρ ∈ Plays∗ be a finite play with last(ρ) ∈ V1. The knowledge
or information set of Player 1 after ρ is I(ρ) := {last(ρ′) | ρ′ ∈ Plays∗, ρ ≈ ρ′}.

An infinite play is winning for Player 1 if there exists a finite prefix ρ of this play whose information set
is contained in S, i.e. I(ρ) ⊆ S, otherwise Player 2 wins. Again, strategies for Player 1 are required to be
observation-based. It can easily be shown that:

Theorem 2 A strategy σ for Player 1 is winning if, and only if, σ is (≈,FRpS)-strictly-uniform.
A strategy σ for Player 2 is winning if, and only if, σ is (≈,G¬RpS)-fully-uniform.

For the second statement of Theorem 2, we make use of the notion of full uniformity because we are interested
in the knowledge of Player 1. We consider that she does not know what strategy Player 2 is playing, hence she
may consider possible some plays that are observationally equivalent to her but not induced by this strategy.

On the other hand, for the first statement, we use strict uniformity but could have used full uniformity
instead. Indeed, since the actions chosen by Player 1 are part of what she observes, she cannot consider possible
a finite play that has not followed her strategy until the point i considered. In fact, if π is induced by σ and
π[0, i] ≈ π′[0, i], then π′[0, i] is also induced by σ. The future of the play may not follow sigma, but this is not
a problem here. Indeed, the property that we consider on equivalent plays, pS , does not depend on the future.

Notice that though we chose to illustrate with an example, any winning condition that could be expressed
as a formula of the linear temporal logic with one knowledge operator would fit in our setting.

3.3 Non-interference

Non-interference, as introduced by [GM82], is a property evaluated on labelled transition systems which handle
Boolean variables. Such systems are tuples (S, I,O, δ, sI , Output) where S is the set of states, I = H ] L is
a set of Boolean input variables partitioned into high security variables H and low security variables L, O is
the set of Boolean output variables, δ : S × 2I → S is the transition function that maps each pair of state and
input variables valuation1 to a next state, sI is the initial state, and Output : S → 2O is the output function
that represents a mapping of states onto valuations of the Boolean output variables. We extend the transition
function δ to S × (2I)∗ → S as expected: δ(s, ε) = s and δ(s, ua) = δ(δ(s, u), a).

We define the L-equivalence, ∼L over (2I)∗ by u ∼L u′ whenever u and u′ have the same length and
they coincide on the values of the low security input variables, i.e. for all 1 ≤ i ≤ length(u), for all l ∈ L,
l ∈ u(i) ⇔ l ∈ u′(i). Given an infinite sequence of inputs w ∈ (2I)ω, we abuse notation by writing Output(w)
for the infinite sequence of output variables valuations encountered in the states along the execution of the
system on input w. A system (S, I,O, δ, sI , Output) verifies the non-interference property if for any two finite
sequences of inputs w,w′ ∈ (2I)∗, w ≈L w′ implies Output(w) = Output(w′). In other words, the valuations of
high security variables have no consequence on the observation of the system.

1we classically confuse valuations over a set B of Boolean variables with elements of 2B .
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A first natural problem is to decide the non-interference property of a system. A second more general
problem is a control problem: we want to decide whether there is a way of restricting the set of input valuations
along the executions, or equivalently to control the environment, so that the system is non-interfering. By
constraining the applied restriction to be trivial, the former problem is a particular case of the latter. We can
encode the control problem in our setting.

Let Sys = (S, I,O, δ, sI , Output) be an instance of the problem, and write Σ for 2I with typical elements
a, b, . . . Without loss of generality, we can assume that Sys is complete: every input valuation yields a transition.
We define a two-player game arena that simulates the system, in which Player 1 fixes the environment, i.e. a
subset of the possible inputs in the current state, and Player 2 chooses a particular input among those. More
formally, let GSys = (V,E, vI , `), with V = V1 ] V2, V1 = (Σ] {ε})× S and V2 = S × 2Σ. A position (a, s) ∈ V1

denotes a situation where the system reaches state s by an a-transition, and (s,A) ∈ V2 denotes a situation where
in state s, the set of possible inputs is A. The set of edges E of the arena is the smallest set such that (a, s)E(s,A)
for all s ∈ S, a ∈ Σ and A ⊆ Σ, and (s,A)E(a, δ(s, a)) whenever s ∈ S and a ∈ A. The initial position of the
arena is vI = (ε, sI), and by assuming that {po | o ∈ 2O} ⊆ AP , we set `(a, s) = `(s,A) = {pOutput(s)}.

By writing ι for the canonical projection from V1 ∪ V2 onto 2I (that is ι(ε, sI) = ι(s,A) = ε and ι(a, s) = a)
and by extending ι to finite plays as expected, we let ρ ≡L ρ′ hold whenever ι(ρ) ∼L ι(ρ′).We now define the
formula

SameOutput := G
∧

po∈AP
(po → Rpo)

which captures the property that the valuations of output variables along ≡L-equivalent executions of the system
coincide, and we can establish the following.

Theorem 3 There is a one-to-one correspondence between (≡L, SameOutput)-strictly-uniform strategies of
Player 1 and the controllers which ensure the non-interference property of the system.

In particular, the trivial strategy of Player 1, where from any position (a, s) she chooses to move to (s,Σ),
is (≡L, SameOutput)-strictly-uniform if, and only if, the system has the non-interference property.

Here we have to use the strict uniformity as we only want to consider the executions of the machine allowed
by the control represented by the strategy.

Notice that in order to make this control problem more realistic, one would seek a maximal permissive
strategy/controller so that environments as “large” as possible are computed, but this is out of the scope of the
paper.

3.4 Diagnosis and Prognosis

Diagnosis has been intensively studied, in particular by the discrete-event systems community (see for example
[SSL+95, YL02, CL99]). Informally, in this setting, a discrete-event system is diagnosable if any occurrence
of a faulty event during an execution is eventually detected. More formally, diagnosability is a property of
discrete-event systems which are structures of the form Sys = (S,Σ,Σo,∆, sI , F ), with S the set of states, Σ
the set of events, Σ0 ⊆ Σ the observable events, ∆ ⊆ S × Σ× S the transition relation, sI the initial state and
F ⊆ S the faulty states; we assume that once a faulty state is reached, only faulty states can be reached (the
fault is persistent). We can rephrase this problem in our setting, with a single player simulating the system.
Notice that since there is only one player, a strategy defines a unique infinite play.

Here we assume that pf ∈ AP represents the fact of being faulty. Let GSys = (V,E, vI , `), with V1 = ∅,
V2 = (Σ]{ε})×S, (a, s)E(b, s′) whenever (s, b, s′) ∈ ∆, vI = (ε, sI), and `(a, s) = {f} if s ∈ F , ∅ otherwise. We
write ρ ≡Σo

ρ′ whenever the sequences of observable events underlying ρ and ρ′ are the same (these sequences
are obtained from the sequences of positions in the play: for each position of the form (a, s), keep its letter a
if a ∈ Σo, and delete it otherwise). In this game Player 1 never plays, all she does is look at Player 2 simulate
the system. There is only one strategy for her, which is to do nothing, and all possible plays, representing all
possible executions of Sys, are in the outcome of this strategy.

Theorem 4 Sys is diagnosable if, and only if, Player 1 has a (≡Σo
,Fpf → FRpf )-fully-uniform strategy in

GSys.
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Here again, since the outcome of the only possible strategy for Player 1 is the whole set of plays, we could
equivalently choose full or strict uniformity.

Prognosis is a companion of diagnosis, but focuses on the ability to predict that a fault will occur. Prognosability-
like properties can be defined in our setting. As an example, we aim at saying that a system is prognosable
whenever the fact that a fault occurs in a system is known at least one step in advance. We define the following
formula, which means that either a fault never occurs, or it occurs but we know it one step before it does.

Prognose := (¬pf )W(¬pf ∧R#pf ))

Using the same framework as for diagnosis, we can propose:

Definition 7 A system Sys is prognosable if there is a (≡Σo
, Prognose)-fully-uniform strategy for Player 1 in

GSys.

3.5 Dependence Logic

Dependence Logic is a flourishing topic introduced recently by Väänänen [Vää07]. It extends first order logic
by adding atomic dependence formulas dep(t1, . . . , tn), which express functional dependence of the term tn on
the terms t1, . . . , tn−1. A dependence atom dep(x0, x1) can be interpreted as ”the value of x1 depends only on
the value of x0”, or ”the value of x1 is fully determined by the value of x0”. Evaluating a dependence between
terms on a single assignment of the free variables is meaningless: in order to tell whether t depends on t′, one
must vary the values of t′ and see how the values of t are affected. This is why a formula of Dependence Logic
is evaluated on a first-order model M and a set of assignments for the free variables, called a team. If t is a
term, M a model and s an assignment for the free variables in t, we note JtKMs ∈ M the interpretation of t in
the model M with the assignment s.

Dependence Logic is inspired by Independence Friendly logic (IF logic), a logic defined by Hintikka and
Sandu [HS89]. Van Benthem gives in [Ben05] an imperfect-information evaluation game for IF logic, using a
notion of uniform strategy that corresponds with the classic notion of imperfect-information or observation-based
strategy.

For Dependence Logic, an evaluation game is also given in [Vää07]. It is presented as a game with imperfect
information, because strategies must verify some “uniformity constraint”, which makes the game undetermined.
However, the notion of uniform strategy in these games is not defined as “playing uniformly in positions of
an information set”, but rather as “playing such that, when positions of an information set are reached, some
property uniformly holds in these positions”. For this reason it is a notion of uniform strategy different from
the one used by Van Benthem in [VB01, Ben05], and this game is not a game with imperfect information stricto
sensu.

We present the evaluation game, the uniformity requirement and then show that this notion fits in our
setting.

Let Φ be a sentence (formula with no free variable) of Dependence Logic in negation normal form, i.e. only
atomic formulas can be negated, and letM be a first order model. GM(ϕ) is a two player game between Player
1 and Player 2; positions are of the form (ϕ, n, s), where ϕ is a subformula of Φ, n is the position in Φ of the first
symbol of ϕ and s is an assignment whose domain contains the free variables of ϕ. The index n is used to decide,
given two positions containing the same dependence atom, whether they are the same syntactic subformulas of
ϕ or not. For a subformula ϕ, len(ϕ) is the number of symbols in ϕ. The game starts in position (ϕ, 1, ∅) and
the rules are as follows:
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position (t1 = t2, n, s): if Jt1KMs = Jt2KMs , Player 1 wins.
position (¬(t1 = t2), n, s): if Jt1KMs = Jt2KMs , Player 2 wins
position (Rt1 . . . tm, n, s): if JRKMJt1KMs . . . JtmKMs , Player 1 wins.
position (¬Rt1 . . . tm, n, s): if JRKMJt1KMs . . . JtmKMs , Player 2 wins.
position (dep(t1, . . . , tm), n, s): Player 1 wins.
position (¬dep(t1, . . . , tm), n, s): Player 2 wins.
position (ϕ ∨ ψ, n, s): Player 1 chooses between position (ϕ, n, s) and (ψ, n+ 1 + len(ϕ), s).
position (ϕ ∧ ψ, n, s): Player 2 chooses between position (ϕ, n, s) and (ψ, n+ 1 + len(ϕ), s).
position (∃xϕ, n, s): Player 1 chooses a value a ∈M and moves to (ϕ, n+ 2, s(x 7→ a))
position (∀xϕ, n, s): Player 2 chooses a value a ∈M and moves to (ϕ, n+ 2, s(x 7→ a))

∀x0∀x1ϕ
′

∅

∀x1ϕ
′

{x0 7→ 1}
∀x1ϕ

′

{x0 7→ 0}
∀x1ϕ

′

{x0 7→ 2}

x0 = x1 ∨ dep(x0, x1)
{x0 7→ 0,
x1 7→ 1}

x0 = x1

{x0 7→ 0,
x1 7→ 1}

dep(x0, x1)
{x0 7→ 0,
x1 7→ 1}

x0 = x1 ∨ dep(x0, x1)
{x0 7→ 0,
x1 7→ 0}

x0 = x1

{x0 7→ 0,
x1 7→ 0}

dep(x0, x1)
{x0 7→ 0,
x1 7→ 0}

x0 = x1 ∨ dep(x0, x1)
{x0 7→ 0,
x1 7→ 2}

x0 = x1

{x0 7→ 0,
x1 7→ 2}

dep(x0, x1)
{x0 7→ 0,
x1 7→ 2}

. . .

Figure 1: Evaluation game for ∀x0∀x1(x0 = x1 ∨ dep(x0, x1)) with M = {0, 1, 2}

Figure 1 represents (a part of) the game for the evaluation of the Dependence Logic formula ∀x0∀x1(x0 =
x1 ∨ dep(x0, x1)) on a model M with domain M = {0, 1, 2}. This formula is not true in this model. Indeed,
intuitively, if there are at least three elements in the domain, it is not because x0 and x1 do not have the same
value that the value of x0 determines the value of x1: there remain two possibilities for the value of x1 that are
not the one of x0. So there should not be a winning strategy for Player 1 for the evaluation game to be correct.

In the first two rounds, Player 2 chooses a value for each of the universally quantified variables x0 and x1.
Then Player 1 chooses a disjunct and we reach atomic formulas. Green positions are winning for Player 1, red
ones are winning for Player 2. The red arrows indicate a strategy for Player 1 (we focus on the subtree for
x0 = 0, we assume that Player 1 plays the same way in the others). We see that this strategy is winning for
Player 1, while the formula is not true in the model.

The problem comes from the fact that, as said earlier, a dependence atom must not be evaluated on a single
assignment but on a set of assignments, a team. In the evaluation game, the team in which a dependence atom
dep(t1, . . . , tn) should be evaluated is the set of assignments in leafs that contain dep(t1, . . . , tn) and are reached
by the strategy. In the example, the assignments in the two leafs linked with the dashed line, {x0 7→ 0, x1 7→ 1}
and {x0 7→ 0, x1 7→ 2} , are thus part of the team in which dep(x0, x1) should be evaluated (there are more in
the two other subtrees not shown here). Then we see that this strategy should not be allowed as while both
leaves agree on the value of x0, they do not agree on the value of x1. This observation leads to defining a certain
notion of uniform strategy.

A strategy σ for Player 1 is uniform in the sense of [Vää07] if, for every two finite plays ρ, ρ′ ∈ Out(σ) such
that last(ρ) = (dep(t1, . . . , tm), n, s, 1) and last(ρ′) = (dep(t1, . . . , tm), n, s′, 1) contain the same (syntactically
speaking) atomic dependence subformula, if s and s′ agree on t1, . . . , tm−1, then they also agree on tm. Then
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we have the expected property that a sentence ϕ of Dependence Logic is true in a model M if Player 1 has a
winning uniform strategy in GM(ϕ).

We characterize uniform strategies in the sense of [Vää07] as uniform strategies in our sense. The game
described above easily fits in our setting (we add loops on terminal positions so as to obtain infinite plays). Let
Φ be a sentence of Dependence Logic, and M be a finite model. We call GMΦ = (V,E, vI) the evaluation game
defined above. For each object a ∈ M of the domain we use one atomic proposition pa, and we also use the
proposition pd to mark positions that contain dependence atoms. So we assume that {pa | a ∈M}]{pd} ⊂ AP ,
and we define GMΦ = (V,E, vI , `), where the valuation ` is as follows :

`(dep(t1, . . . , tm), n, s) = {pa, pd} with a = JtmKMs
`( , n, s) = ∅

We define the equivalence relation ' on finite plays as the smallest reflexive relation such that if there is
ϕ = dep(t1, . . . , tm) and n s.t last(ρ) = (ϕ, n, s), last(ρ′) = (ϕ, n, s′), and JtiKMs = JtiKMs′ for i = 1, . . . , n − 1,
then ρ ' ρ′. Now we define the formula

AgreeOnLast := G(pd →
∨
a∈M

Rpa)

which expresses that whenever the current position contains a dependence atom dep(t1, . . . , tm), it agrees with
all equivalent finite plays on some value a for tm. Since equivalent plays are those ending in a position that has
the same dependence atom and agrees on the first m− 1 terms, it is easy to prove:

Theorem 5 A strategy σ for Player 1 in GMΦ is uniform if, and only if, it is (', AgreeOnLast)-strictly-uniform
in GMΦ .

In this example again, the strict uniformity is needed, as we only want to catch leaves that are hit by the
strategy. Also, note that here ' is an equivalence because we take the reflexive closure of some transitive and
reflexive relation. But as for observation based strategies, if we did not take the reflexive closure, we could avoid
using the proposition pd and use the simpler formula

AgreeOnLast’ := G
∨
a∈M

Rpa

Indeed the relation would not be reflexive: in particular plays not ending in a dependence atom would not
be linked to any play, and Rϕ would trivially hold for any ϕ in these plays; this is why testing whether we are
in a dependence atom before enforcing that some pa must hold everywhere would no longer be needed.

3.6 Dependence logic and games with imperfect information

As we said, the evaluation game for Dependence Logic presented in the previous subsection is said to be a game
with imperfect information. We do not agree, because the difference between games with perfect information
and games with imperfect information (at least in the perfect recall setting, it is not as clear otherwise, see
[PR97]) lies in the fact that in the latter, some finite plays are related, in the sense that they are indistinguishable
to one of the players, and this player must behave the same way in these related situations. Concerning the
evaluation game for Dependence Logic, the difference with perfect-information games is that some plays are
related, those ending in positions bound to the same atomic dependence formula dep(t1, . . . , tn) with valuations
agreeing on t1, . . . , tn−1, and the valuations in these related positions must agree on tn. So it is not that players
should behave the same way in related situations, but rather that the players should have behaved in such a
way that the valuations for tn are the same in related situations.

But it is true that there is a similarity between these two constraints on allowed strategies, as shown
by looking at the formulas of the uniformity properties capturing observation-based strategies (SameAct) and
uniform strategies in the sense of Dependence Logic (AgreeOnLast):

SameAct = G(p1 →
∨

a∈Act
R#pa) and AgreeOnLast = G(pd →

∨
a∈M

Rpa)
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In the first case, the same thing must happen in equivalent situations, whereas in the second case, the same
thing must hold in equivalent situations.

The resemblance is even more striking if we take the second versions:

SameAct’ = G
∨

a∈Act
Rpa and AgreeOnLast’ = G

∨
a∈M

Rpa

Neither semantics games for Dependence Logic are games with imperfect information in the classical sense,
nor games with imperfect information can be easily described using the uniform strategy notion of [Vää07], but
both can be characterized in a very similar way with our notion of uniform strategies.

4 Regular relations

The previous examples from the literature all fall into a particular class of binary relations, so-called regular2

relations. They are characterized by some finite state machines called transducers [Ber79]. One way to see a
transducer is to picture a nondeterministic automaton with two tapes, an input tape and an output tape. The
transducer reads an input finite word on its input tape and writes out a finite word on its output tape. Notice
that this machine is in general nondeterministic so that it may have several outputs for a given input word.
Hence, transducers define binary relations.

Definition 8 A Finite State Transducer (FST) is a tuple T = (Q,Σ,Γ, qi, QF ,∆), where Q is a finite set of
states, Σ is the input alphabet, Γ is the output alphabet, qi ∈ Q is a distinguished initial state, QF ⊆ Q is a
set of accepting states, and ∆ ⊂ Q× (Σ ∪ {ε})× (Γ ∪ {ε})×Q is a finite set of transitions.

Intuitively, (q, a, b, q′) ∈ ∆ means that the transducer can move from state q to state q′ by reading a and
writing b (both possibly ε). We also define the extended transition relation ∆∗, which is the smallest relation
such that:

• for all q ∈ Q, (q, ε, ε, q) ∈ ∆∗, and

• if (q, w,w′, q′) ∈ ∆∗ and (q′, a, b, q′′) ∈ ∆, then (q, w · a,w′ · b, q′′) ∈ ∆∗.

In the following, for q, q′ ∈ Q, w ∈ Σ∗ and w′ ∈ Γ∗, notation q −[w/w′]→ q′ means (q, w,w′, q′) ∈ ∆∗.

Definition 9 Let T = (Q,Σ,Γ, qi, QF ,∆) be an FST. The relation recognized by T is

[T ] := {(w,w′) | w ∈ Σ∗, w′ ∈ Γ∗,∃q ∈ QF , qi −[w/w′]→ q}.

In other words, a couple (w,w′) is in the relation recognized by T if there is an accepting execution of T
that reads w and outputs w′.

Definition 10 Let Σ and Γ be two alphabets. A binary relation ; ⊆ Σ∗ × Γ∗ is regular if it is recognized by
an FST.

We now recall some basic properties of regular relations that will be useful later on. The first property
regards intersection (regular relations are not closed under intersection in general) and the second property
regards composition. The interested reader is referred to [Ber79] for technical details.

Property 6 Let Σ and Γ be two alphabets. Let ; ⊆ Σ∗ × Γ∗ be a regular relation, and let L and L′ be two
regular languages over Σ and Γ respectively. Then ; ∩ (L× L′) is also a regular relation.

Let Σ,Σ′,Σ′′ be three alphabets. Let ;1 ⊆ Σ∗ × Σ′∗ and ;2 ⊆ Σ′∗ × Σ′′∗ be two binary relations.

2Actually, the genuine vocabulary is “rational relations”, but we prefer to use “regular relations” to avoid any misleading
terminology in the context of game theory and rational players.
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Definition 11 The composition of ;1 and ;2 is ;1 ◦;2⊆ Σ∗ × Σ′′∗, defined by:

;1 ◦;2= {(ρ, ρ′′) | ∃ρ′ ∈ Σ′∗, ρ ;1 ρ
′ and ρ′ ;2 ρ

′′}

Property 7 [EM65] If ;1 and ;2 are two regular relations recognized respectively by T1 and T2 , then ;1 ◦;2

is also regular, and the composition of the transducers T1 ◦ T2 recognizes ;1 ◦;2.

We close this section by taking two examples of binary relations involved in Section 3 and showing that they
are regular. In fact, one can check that they all are.

Example 1 We first consider an example induced by the imperfect-information setting of Section 3.1. Let
Gimp = (V,E, vI , `,∼) be an imperfect-information game arena as described in Section 3.1. Relation ≈ ⊆ Plays2

∗
is an observational equivalence over plays, generated by the equivalence ∼ between positions. Consider the FST
Tobs depicted in Figure 2, with a unique initial state (ingoing arrow) that is also the final state (two concentric
circles). It reads an input letter (a position) and outputs any position that is ∼-equivalent to it. This FST
recognizes a relation ' over V ∗ × V ∗, such that ≈ = ' ∩ Plays2

∗. Because Plays∗ is a regular language (one
can see G as a finite state automaton), Proposition 6 gives that ' ∩ Plays2

∗ is also a regular relation, and in
fact G × Tobs × G is a transducer that precisely recognizes ≈.

q0

{v/v′ | v ∼ v′}

{(v, a)/(v′, a) | v ∼ v′}

Figure 2: Tobs, an FST for the equivalence relation ' of Sections 3.1 and 3.2.

Example 2 Consider another binary relation that is also an equivalence, but induced by some alphabetic mor-
phism h : V → O ∪ {ε}: two plays ρ and ρ′ are equivalent, written ρ ≡O ρ′, whenever h(ρ) = h(ρ′). This
example generalizes the one of Section 3.4 where the alphabetic morphism is a mere projection. In order to draw
an FST for the relation ≡O, we need to fix the set O. Assume O has only two elements blue and pink so that
any position in the game is either observed as h(v) = blue or h(v) = pink or unobserved (the case h(v) = ε).
The FST TO that recognizes ≡O is drawn in Figure 3. Once again, one should take the product of TO with the
game arena to restrict the relation to Plays∗ × Plays∗. Remark that contrary to the case of equivalence ≈ in
Figure 2, the equivalence ≡O does not preserve the length of plays.

Example 1 is an example of a simple transducer, but in fact all relations of Section 3 can be recognized by
the transducer given in Example 2, for an appropriate alphabetic morphism. In the next section, we will only
consider regular relations over plays, i.e. the relation ; in the model is recognized by some FST.

5 Automated synthesis of fully-uniform strategies

In this section, we study the problem of synthesizing fully-uniform strategies. We restrict to finite arenas.
Motivated by Section 4, we only consider regular relations, and as a consequence we always assume that the
semantic relation between plays is described by a finite state transducer T . Still, when it is clear from the
context, we write ; instead of [T ]. Also, because we only consider full uniformity and no longer the strict
one, it is understood in the semantics of a formula that the universe Π is the set of plays of the considered
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q0

qblue

qpink

{v/ε |h(v) = ε} ∪ {ε/v |h(v) = ε} ∪ {v/v′ |h(v) = h(v′) 6= ε}

{v/ε |h(v) = blue}

{v/ε |h(v) = ε} ∪ {ε/v |h(v) = ε}

{ε/v |h(v) = blue}

{v/ε |h(v) = pink}

{v/ε |h(v) = ε} ∪ {ε/v |h(v) = ε}

{ε/v |h(v) = pink}

Figure 3: TO, an FST for the equivalence relation ≡O.

game, hence we omit it when it is clear from the context. Furthermore, we will sometimes make the semantic
relation between plays explicit. All these conventions yield a notation of the form π, i |=; ϕ meaning that
Playsω, π, i |= ϕ with the R-modality semantics based on the binary relation ;.

Finally, in this section, the size |G| of an arena G is the number of positions, the size |T | of a transducer T
is the number of states, and |ϕ| is the size of formula ϕ.

Definition 12 For each n ∈ N, we define the decision problem FUSn by:

FUSn := {(G, T, ϕ) | G is an arena and ([T ], ϕ) is a uniformity property3 with ϕ ∈ Ln such that
there exists a ([T ], ϕ)-fully-uniform strategy for Player 1 in G}

The fully-uniform strategy problem is FUS:=
⋃
n∈N FUSn

For an instance (G, T, ϕ) of FUS, its size is defined as |(G, T, ϕ)| := |G|+ |T |+ |ϕ|.

Theorem 8 FUSn is in 2-EXPTIME for n ≤ 2, and in n-EXPTIME for n > 2.

Corollary 9 The fully-uniform strategy problem is decidable.

The rest of this section is dedicated to the proof of Theorem 8. We describe a powerset construction for a
new arena (Section 5.1) and a way to lift the semantic relation between plays to this powerset construction
(Section 5.2). Next we show how to exploit this construction to reduce membership in FUSn+1 to membership
in FUSn (Section 5.3).

5.1 Powerset arena

In games with imperfect information, the information set of a player after a finite play is the set of positions
that are consistent with what she has observed. We define a similar notion in our setting, and we show that the
regularity assumption on the relation is sufficient to compute information sets and build a powerset construction
arena in which formulas of the kind Rϕ where ϕ ∈ LTL can be evaluated positionally.

Definition 13 Let G be an arena, ; ⊆ Plays2
∗ and ρ ∈ Plays∗. The information set after the finite play ρ is

the set of terminating positions of related finite plays. Formally, I(ρ) = {v′ | ∃ρ′ · v′ ∈ Plays∗, ρ ; ρ′ · v′}.
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For an arena G and a transducer T over Plays∗, we construct a powerset arena Ĝ in which formulas of the
form Rϕ can be evaluated positionally when ϕ ∈ L0.

Unlike classic powerset constructions [Rei84, CDHR06], in our setting, the new information set after a move
in the game cannot be computed knowing only the previous information set and the new position. To compute
information sets, we need to simulate the nondeterministic execution of T , taking as an input the sequence of
positions played and writing as output the related plays. This is why in our construction, positions do not
contain directly information sets, but rather we add in the positions of the game sufficient information on the
current configuration of the transducer.

More precisely, two things are necessary: the set of states the transducer may be in after reading the sequence
of positions played so far, plus for each of these states the set of possible last positions written on the output
tape (because of nondeterminacy, different executions can end up in configurations with same state but different
last letters on the output tape). We only need to remember the last letter on the output tape, and not the
whole tape, because the information set which we aim at computing is just the set of the last positions of related
plays.

So positions are of the form (v, S, Last), where S ⊆ Q is the set of possible current states of T , and
Last : S → P(V ) associates to a state q ∈ S the set of the possible last positions on the output tape of T if the
current state is q. The transitions in this arena follow the ones in G, we just have to maintain the additional
information about the configuration of the transducer. In order to define the initial position v̂I = (vI , SI , LastI)

of Ĝ we need to simulate the execution of T starting from its initial state and reading vI . To do so, we introduce
an artificial position v̂−1 that initializes the transducer before reading the first position of a play. Concretely,
v̂−1 = (v−1, S−1, Last−1), with v−1 /∈ V a fresh position, S−1 = {qi} because before starting the transducer is
in its initial state, and Last−1(qi) = ∅ because nothing is written on the output tape.

Definition 14 Let G = (V,E, vI , `) be an arena and T = (Q,V, qi, QF ,∆) be an FST such that [T ] ⊆ Plays2
∗.

We define the arena Ĝ = (V̂ , Ê, v̂I , ̂̀) by:

• V̂ = V × P(Q)× (Q→ P(V )) ] {v̂−1}

• (u, S, Last) →̂ (v, S′, Last′) if

– u = v−1 and v = vI , or u→ v,

– S′ = {q′ | ∃q ∈ S,∃λ′ ∈ V ∗, q −[v/λ′]→ q′} and

– Last′(q′) = {v′ | ∃q ∈ S, ∃λ′ ∈ V ∗, q −[v/λ′ · v′]→ q′, or q −[v/ε]→ q′ and v′ ∈ Last(q)}

• v̂I is the only v̂ ∈ V̂ such that v̂−1 →̂ v̂.

• ̂̀(v̂) = `(v) if v̂ = (v, S, Last).

Notice that Ĝ has size |Ĝ| = O(|G| × 2|T | × 2|T ||G|).

Regarding the definition of transitions, the first point means that transitions in Ê follow those in E, except
for the only transition leaving v̂−1, that is used to define v̂I . The second point for the definition of S′ expresses
that when we move from u to v in G, we give v as an input to the transducer. So the set of states the transducer
can be in after this move is exactly the set of states that can be reached from one of the previous possible states
by reading v and writing some sequence of positions (possibly ε). We use the notation λ because without loss of
generality one could assume that the transducer can only output sequences of positions that form a valid path
in the game graph. But it is not important here, the assumption that [T ] ⊆ Plays2

∗ is sufficient. Finally, the
third point for the definition of Last′ captures that if some position v′ is at the end of the output tape after the
transducer read v and reached q′, it is either because while reading v the last letter it wrote is v′, or it wrote
nothing and v′ was already the end of the output tape before reading v.

To finish with, v̂I is the only successor of v̂−1, and the valuation of a position in the powerset construction
is the valuation of the underlying position in the original arena.

Remark 1 We need to clarify the following definitions:
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• S′ = {q′ | ∃q ∈ S, ∃λ′ ∈ V ∗, q −[v/λ′]→ q′} and

• Last′(q′) = {v′ | ∃q ∈ S, ∃λ′ ∈ V ∗, q −[v/λ′ · v′]→ q′, or q −[v/ε]→ q′ and v′ ∈ Last(q)}

Indeed, in each one, there can be infinitely many such λ′ because of transitions that read nothing on the input
tape. Still, S′ and Last′ can be computed in linear time in the size of ∆. To do so, for each q in S, we compute
Sq,v = {(q′, v′) | ∃λ′ ∈ V ∗, q −[v/λ′ · v′]→ q′, or q −[v/ε]→ q′ and v′ ∈ Last(q)}. S′ and Last′ can be easily
reconstructed from ∪q∈SSq,v. For q ∈ S, computing Sq,v can be done by depth-first search, by first reading v
and then only ε, and remembering the last output. The search can be stopped when we reach a state that has
already been visited.

Let us take an arena G and an FST T such that [T ] ⊆ Plays2
∗. For a position v̂ of Ĝ, we will access the

different components of the position with the notations v̂.v, v̂.S, v̂.Last.

There is a natural mapping f : Playsω → P̂ laysω: for an infinite play π ∈ G, we define f(π) as the only play

π̂ in P̂ laysω such that π̂[0].v · π̂[1].v · π̂[2].v . . . = π. This is well defined because from a position û = (u, S, Last)

in V̂ , for v ∈ V such that u → v, there is a unique move û →̂ v̂ such that v̂.v = v. It is easy to see that f is
a bijection. From now on we will slightly abuse notations: for a play π ∈ Playsω, π̂ will denote f(π), and for

π̂ ∈ P̂ laysω, π will denote f−1(π̂). idem for finite plays.

Definition 15 Let v̂ = (v, S, Last) ∈ V̂ be a position in the powerset construction. Its local information set
v̂.I is defined by:

v̂.I :=
⋃

q∈S∩QF

Last(q)

Definition 15 means that a position v′ is in the information set after a play ρ̂ if and only if there is an execution
of the transducer on the word seen so far that terminates in an accepting state with v′ the last output. Actually,
the local information sets correspond to the real information sets as expressed by the following proposition.

Proposition 10 For all ρ̂ ∈ P̂ lays∗, last(ρ̂).I = I(ρ).

The rest of this subsection is dedicated to the proof of Proposition 10.

Lemma 11 Let ρ̂ ∈ P̂ lays∗, and let v̂ := last(ρ̂). Then, v̂.S = {q | ∃λ′ ∈ V ∗, qi −[ρ/λ′]→ q}, and for each
q ∈ v̂.S, v̂.Last(q) = {v′ | ∃λ′ ∈ V ∗, qi −[ρ/λ′ · v′]→ q}.

Proof The proof is by induction on ρ̂.

Case v̂I . We note v̂I = (vI , SI , LastI), and start with the left-right inclusions for both equalities. Let q′ ∈ SI
and v′ ∈ LastI(q). By definition of LastI and SI there is a q in S−1 = {qi} (so q = qi) and a λ′ ∈ V ∗ such
that qi −[vI/λ

′]→ q′, which proves the first inclusion. Since Last−1(qi) = ∅ by definition, the case λ′ = ε is
not possible. So there exists λ′′ such that λ′ = λ′′ · v′, which gives us the second inclusion.

The proofs for the two right-left inclusions are straightforward applications of the definitions of SI and
LastI .

Case ρ̂ · û · v̂, ρ̂ ∈ P̂ lays∗ ∪ {ε}. We note û = (u, S, Last) and v̂ = (v, S′, Last′). For the two left-right inclu-
sions, let q′ ∈ S′ and v′ ∈ Last′(q′). By definition of S′ and Last′ there is a q in S and a λ′1 ∈ V ∗ such
that q−[v/λ′1]→ q′, and either λ′1 = λ′ ·v′ for some λ′, or λ′1 = ε and v′ ∈ Last(q). By induction hypothesis,
we have that S = {q | ∃λ′ ∈ V ∗, qi−[ρ · u/λ′]→ q}, so there exists λ′2 ∈ V ∗ such that qi−[ρ · u/λ′2]→ q, and by
transitivity, qi −[ρ · u · v/λ′2 · λ′1]→ q′. This proves the first left-right inclusion. For the second one we split
the two cases for λ′1.

• If λ′1 = λ′3 · v′ for some λ′3, then by transitivity we have qi −[ρ · u · v/λ′2 · λ′3 · v′]→ q′, which proves the
second left-right inclusion.
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• If λ′1 = ε, then v′ ∈ Last(q). By induction hypothesis there is some λ′3 such that qi −[ρ · u/λ′3 · v′]→ q.
By transitivity we obtain qi −[ρ · u · v/λ′3 · v′]→ q′, which also proves the second left-right inclusion.

Now for the first right-left inclusion, take q′ and λ′ such that qi −[ρ · u · v/λ′]→ q′. Necessarily there exist
λ′1, λ

′
2 and q such that qi −[ρ · u/λ′1]→ q, q −[v/λ′2]→ q′ and λ′1 · λ′2 = λ′. By induction hypothesis q ∈ S, so

by definition of S′, q′ ∈ S′. For the second right-left inclusion, take q′ ∈ S′, and take v′ and λ′ such that
qi −[ρ · u · v/λ′ · v′]→ q′. Again, necessarily there exist λ′1, λ

′
2 and q such that qi −[ρ · u/λ′1]→ q, q −[v/λ′2]→ q′

and λ′1 · λ′2 = λ′ · v′. By induction hypothesis q ∈ S. We distinguish two cases.

• If λ′2 = ε, then λ′1 = λ′ · v′, hence qi −[ρ · u/λ′ · v′]→ q. By induction hypothesis, v′ ∈ Last(q), so by
definition of Last′, because q ∈ S and q −[v/ε]→ q′, we obtain v′ ∈ Last′(q′).

• If λ′2 = λ′3 · v′ for some λ′3, then by definition of Last′, because q ∈ S, we have v′ ∈ Last′(q′).

This finishes the induction.

We can now terminate the proof of Proposition 10: Let ρ̂ ∈ P̂ lays∗, and let v̂ = last(ρ̂) be of the form
v̂ = (v, S, Last). We remind that (Definition 13) I(ρ) = {v′ ∈ V | ∃ρ′ · v′ ∈ Plays∗, ρ ; ρ′ · v′}.

We start with the left-right inclusion. Let v′ ∈ v̂.I. By definition, v̂.I =
⋃
q∈S∩QF

Last(q), so v′ ∈ Last(q)
for some q ∈ S ∩ QF . By Lemma 11, there exists λ′ ∈ V ∗ such that qi −[ρ/λ′ · v′]→ q, and because q ∈ QF , we
have that (ρ, λ′ · v′) ∈ [T ], which implies that ρ ; λ′ · v′. Since ; ⊆ Plays2

∗, λ
′ · v′ ∈ Plays∗, hence v′ ∈ I(ρ).

For the right-left inclusion, take v′ ∈ I(ρ). There exists ρ′ such that ρ′ · v′ ∈ Plays∗ and ρ ; ρ′ · v′. By
definition of T , there exists q ∈ QF such that qi −[ρ/ρ′ · v′]→ q. By Lemma 11, q ∈ S, and v′ ∈ Last(q). Since
q ∈ S ∩QF , v′ ∈ v̂.I.

5.2 Lifting transducers

Let G be an arena, T an FST such that [T ] ⊆ Plays2
∗, and let Ĝ = Power(G, T ). We describe how to build a

transducer T̂ that lifts [T ] ⊆ Plays∗ × Plays∗ to P̂ lays∗ × P̂ lays∗.
We note T↓ for the deterministic transducer that computes f , the bijection that maps a play ρ̂ ∈ P̂ lays∗ to

the underlying play ρ ∈ Plays∗, and T↑ for the deterministic transducer that computes f−1. Both are easily
built from Ĝ, and |T↓ | = |T↑ | = O(|Ĝ|).

Definition 16 The lift of transducer T is T̂ = T↓ ◦T ◦ T↑.

Notice that |T̂ | = O(|Ĝ| × |T | × |Ĝ|).

In the following we let ; = [T ] and ;̂ = [T̂ ]. The following proposition follows directly from the definitions

of Ĝ and T̂ :

Proposition 12 For every ϕ ∈ L, π ∈ Playsω, i ≥ 0,

π, i |=; ϕ iff π̂, i |=;̂ ϕ

5.3 R-elimination

We establish that given an instance of FUSn+1, we can build in exponential space and time an equivalent
instance of FUSn.

Proposition 13 For all instance (G, T, ϕ) of FUSn+1, there exists an instance (G′, T ′, ϕ′) of FUSn computable
in time exponential in |(G, T, ϕ)| such that:

• (G, T, ϕ) ∈ FUSn+1 iff (G′, T ′, ϕ′) ∈ FUSn
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• |G′| = O(2(|G|+|T |)2)

• |T ′| = O(2O(|G|+|T |)2)

• |ϕ′| = O(|ϕ|)

The rest of the section is dedicated to the proof of Proposition 13. Let (G, T, ϕ) be an instance of FUSn+1.

Lemma 14 Let π ∈ Playsω, i ≥ 0, and ϕ be an LTL−formula.

π, i |=; Rϕ iff G, u |= ϕ for all u ∈ I(π[0, i]).

Proof We start with the left-right implication. Suppose that π, i |= Rϕ holds, and take u ∈ I(π[0, i]). We
need to prove that G, u |= ϕ. To do so, we take π′ ∈ Tracesω(u) an infinite trace starting in u and we prove
that π′, 0 |= ϕ. Since u ∈ I(π[0, i]), by definition of the information set, there exists ρ · u ∈ Plays∗ such that
π[0, i] ; ρ ·u. We let j = |ρ| and π′′ = ρ ·π′ be such that π′′[j] = u. Clearly, π′′ ∈ Playsω, and π[0, i] ; π[0, j].
Since π, i |= Rϕ holds, we have that π′′, j |= ϕ. And because ϕ ∈ LTL, the fact that it holds at some point of a
trace only depends on the future of this point, hence π′′[j,∞], 0 |= ϕ, i.e. π′, 0 |= ϕ.

For the right-left implication, suppose that G, u |= ϕ for all u ∈ I(π[0, i]), and take π′ ∈ Playsω, j ≥ 0 such
that π[0, i] ; π′[0, j]. We have that π′[j] ∈ I(π[0, i]), so G, π′[j] |= ϕ. Because π′[j,∞] is in Tracesω(π′[j]), we
have that π′[j,∞], 0 |= ϕ, hence π′, j |= ϕ.

Lemma 15 Let π̂ ∈ P̂ laysω, i ≥ 0, and let ϕ be an LTL−formula.

π̂, i |=;̂ Rϕ iff G, u |= ϕ for all u ∈ π̂[i].I.

Proof Let π̂ ∈ P̂ laysω and i ≥ 0. By Proposition 12, for any ϕ ∈ LTL, π̂, i |=;̂ Rϕ iff π, i |=; Rϕ, and
by Lemma 14, π, i |=; Rϕ iff G, u |= ϕ for all u ∈ I(π[0, i]). Now, by Proposition 10, π̂[i].I = I(π[0, i]), which
concludes the proof.

We now define how formulas of the kind Rϕ can be replaced by new atomic propositions, and how positions
of the powerset arena can be marked with these new propositions: To an arena G, a formula ϕ ∈ L and a
subformula Rψ ∈ L1 ∩ Sub(ϕ) (if any), we associate a fresh atomic proposition pRψ that occurs neither in G
nor in ϕ.

Definition 17 For ϕ ∈ Ln+1, we define ϕ̂ := ϕ[pRψ/Rψ | Rψ ∈ L1 ∩ Sub(ϕ)].

Example 3 R̂#Rq = R#pRq

Definition 18 For an instance (G, T, ϕ) of FUSn+1, we define the instance ̂(G, T, ϕ) of FUSn as (G′, T ′, ϕ′)
by:

• If Ĝ = (V̂ , Ê, v̂I , ̂̀), then G′ = (V̂ , Ê, v̂I , ̂̀′), witĥ̀′(v̂) = ̂̀(v̂) ∪ {pRψ | Rψ ∈ L1 ∩ Sub(ϕ) and ∀u ∈ v̂.I,G, u |= ψ}.

• T ′ = T̂

• ϕ′ = ϕ̂

From now on, for an instance (G, T, ϕ) of FUSn+1, we abuse notation by writing Ĝ = (V̂ , Ê, v̂I , ̂̀) for the
modified powerset construction of Definition 18.

Lemma 16 Take an instance (G, T, ϕ) of FUSn+1, and let (Ĝ, T̂ , ϕ̂) = ̂(G, T, ϕ). Then for all π ∈ Playsω and
i ≥ 0,

π, i |=; ϕ iff π̂, i |=;̂ ϕ̂
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Proof By Proposition 12, π, i |=; ϕ iff π̂, i |=;̂ ϕ, so it only remains to show that π̂, i |=;̂ ϕ iff π̂, i |=;̂ ϕ̂.
We prove it by induction on ϕ. The cases ϕ = p, ϕ = ¬ψ,ϕ = ψ∨ψ′, ϕ = #ψ,ϕ = ψ U ψ′ are trivial. It remains
to consider the case ϕ = Rψ, which decomposes into two subcases depending on dR(ψ):

• If dR(ψ) > 0, then ϕ̂ = Rψ̂. We then have:

π̂, i |=;̂ Rψ iff ∀π̂′, j s.t. π̂[0, i] ;̂ π̂′[0, j], π̂′, j |=;̂ ψ

iff ∀π̂′, j s.t. π̂[0, i] ;̂ π̂′[0, j], π̂′, j |=;̂ ψ̂ (by induction hypothesis)

iff π̂, i |=;̂ Rψ̂

• If dR(ψ) = 0, that is ψ ∈ LTL, then ϕ̂ = pRψ.

π̂, i |=;̂ Rψ iff G, u |= ψ for all u ∈ π̂[i].I (by Lemma 15)

iff pRψ ∈ ̂̀(π̂[i]) (by Definition 18)

iff π̂, i |=;̂ pRψ

We can now achieve the proof of Proposition 13. Take an instance (G, T, ϕ) of FUSn+1. We show that

(Ĝ, T̂ , ϕ̂) = ̂(G, T, ϕ) is a good candidate. Notice that the natural bijection between Plays∗ and P̂ lays∗ induces

a bijection between strategies σ in G and strategies σ̂ in Ĝ, such that for every strategy σ in G, if we note

Ôut(σ) := {π̂ | π ∈ Out(σ)}, then Out(σ̂) = Ôut(σ).

Let σ be ([T ], ϕ)-fully-uniform in G. If π̂ ∈ Out(σ̂), then π̂ ∈ Ôut(σ), hence π ∈ Out(σ). Because σ is

([T ], ϕ)-fully-uniform, π, 0 |=; ϕ. By Lemma 16 we conclude that π̂, 0 |=;̂ ϕ̂, which means that σ̂ is ([T̂ ], ϕ̂)-

fully-uniform in Ĝ. Since dR(ϕ̂) = dR(ϕ)− 1 = n, ̂(G, T, ϕ) ∈ FUSn.

Assume ̂(G, T, ϕ) ∈ FUSn, that is there exists a strategy σ̂ which is ([T̂ ], ϕ̂)-fully-uniform in Ĝ. Any play

π ∈ Out(σ) is uniquely associated to a play π̂ ∈ Ôut(σ) = Out(σ̂), which by assumption satisfies π̂, 0 |=;̂ ϕ̂.
By Lemma 16, π, 0 |=; ϕ, which shows that σ is ([T ], ϕ)-fully-uniform in G.

This achieves the proof of the first point of Proposition 13. For the second point, recall Definition 14 that
gives |Ĝ| = O(|G|× 2|T |× 2|T ||G|), so that |Ĝ| = O(2(|G|+|T |)2). The third point is derived from this second point

and Definition 16: |T̂ | = O(|Ĝ| × |T | × |Ĝ|) = O(2(|G|+|T |)2 × |T | × 2(|G|+|T |)2) = O(2O(|G|+|T |)2). Finally, the
fourth point stating that |ϕ̂| = O(|ϕ|) is immediate by Definition 17.

It remains to prove that ̂(G, T, ϕ) is computed in time exponential in |(G, T, ϕ)|. Clearly, the powerset
construction (Section 5.1) and the lifting of the transducer (Section 5.2) both take exponential time in |G|+ |T |,
hence in |(G, T, ϕ)|. The marking phase in the R-elimination (Definition 18) involves model checking at most
|ϕ| LTL-formulas on each position of the original arena G. Model checking an LTL-formula in a given position
requires polynomial space in |G|+ |ϕ| [SC85]. Since PSPACE ⊆ EXPTIME, it is exponential in time. All in
all, we need to model check an LTL-formula at most |G| × |ϕ| times, so the whole marking phase is done in

time exponential in |(G, T, ϕ)|. We conclude that ̂(G, T, ϕ) can be computed in time exponential in |(G, T, ϕ)|,
which terminates the proof of Proposition 13.

5.4 Complexity of FUSn

In this subsection we describe an algorithm that decides whether an instance (G, T, ϕ) is in FUS, and we
establish upper bounds for the FUSn problem, for each n ∈ N.

Algorithm 1 describes our decision procedure. It takes as an entry an instance (G, T, ϕ) of FUS, and returns
true if it is a positive instance4, false otherwise. To do so, starting from (G0, T0, ϕ0) = (G, T, ϕ), it successively

4i.e., there exists a ([T ], ϕ)-fully-uniform strategy in G.
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applies the construction described in Subsection 5.3 to eliminate R operators in ϕ and to ultimately reduce the
problem to solving an equivalent LTL game.

It is known that solving LTL games has a time complexity doubly-exponential in the size of the formula,
and that it is actually 2EXPTIME-complete [PR89]. We remind that solving an LTL game (G, ϕ), in the
automata-theoretic formulation of this problem [Var91], can be done by the following procedure, that we will
call in LTLGameSolver (see [PR89, ALT04]). First, compute a nondeterministic Büchi tree automaton that
accepts trees whose branches all verify the formula. This automaton is of size exponential in |ϕ|. Then, by
for example Safra’s construction [Saf88], build an equivalent deterministic Rabin automaton Aϕ with a number
of states doubly-exponential in ϕ, and a number of pairs exponential in ϕ. Then, with a linear cost in |G|,
transform the arena G into a nondeterministic tree automaton AG that accepts all strategies of Player 1 in G.
Then, there exists a strategy whose outcomes all satisfy ϕ if and only if the product Rabin automaton Aϕ×AG
accepts some tree. Deciding the emptiness of a Rabin tree automaton can be done time O((`m)3m), where `
is the number of states and m is the number of pairs of the Rabin automaton [Ros91]. Provided that for the

product Rabin automaton Aϕ ×AG we have ` = |G| × 22|ϕ| and m = 2|ϕ|, we finally obtain the following upper
bound:

Proposition 17 Solving an LTL game (G, ϕ) takes time |G|2O(|ϕ|)
.

It is important to keep the size of the arena and the size of the formula apart for the moment, instead of just
saying that it is doubly-exponential in the size of the entry, because in our decision procedure, the size of the
iterated powerset constructions suffers a exponential blow-up, contrary to the successive formulas whose sizes
remains unchanged (and even decrease since subformulas are replaced with atomic propositions).

Input: (G, T, ϕ)
Output: true if (G, T, ϕ) ∈ FUS, false otherwise
(G0, T0, ϕ0) := (G, T, ϕ);
k := 0;
while dR(ϕk) > 0 do

(Gk+1, Tk+1, ϕk+1) := ̂(Gk, Tk, ϕk);
k := k + 1;

end
return LTLGameSolver(Gk, ϕk)

Algorithm 1: Decision procedure for the problem FUS.

Theorem 8 as announced at the beginning of Section 5 can now be proved.
Let n ∈ N, and let (G, T, ϕ) be an instance of FUSn. If n = 0, the body of the while instruction is not

executed, and we immediately call LTLGameSolver(G0, ϕ0). By Proposition 17, this call takes time |G0|2
O(|ϕ0|)

,
hence it is 2-EXPTIME in |(G, T, ϕ)|. We next answer the case n > 0, and will distinguish the two particular
cases n = 1 and n = 2.

For convenience, we introduce notations for iterated exponential functions: for k, n ∈ N, expk(n) = 22···
2n }

k.

Lemma 18 For every 0 ≤ k ≤ n, |Gk| = |Tk| = expk(O(|G|+ |T |)2).

Proof By induction on k, using Proposition 13.

If (G, T, ϕ) is an instance of FUSn, for 1 ≤ k ≤ n, by Proposition 13, the execution of the k-th loop
takes time exponential in |(Gk−1, Tk−1, ϕk−1)|. Hence by Lemma 18, the time complexity for the k-th loop is
exp1(expk−1(O(|G|+ |T |)2) + |ϕ|) = 2|ϕ|expk(O(|G|+ |T |)2), and the execution of the whole while instruction
takes time θwhile where:

θwhile =

n∑
k=1

2|ϕ|expk(O(|G|+ |T |)2)

= 2|ϕ|expn(O(|G|+ |T |)2)
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By Proposition 17 and Lemma 18, solving the final LTL game (Gn, ϕn) takes time θltl, where:

θltl = |Gn|2
O(|ϕn|)

= exp1(expn−1(O(|G|+ |T |)2) ∗ 2O(|ϕ|))

We obtain that Algorithm 1 runs in time θ = θwhile + θltl, but since (for n > 0), θwhile is negligible
compared to θltl, we obtain:

θ = exp1(expn−1(O(|G|+ |T |)2) ∗ 2O(|ϕ|)) (1)

Additionally, for n = 1, the double exponential complexity stems from the size of the formula. For n = 2,
because the size of the arena has taken two exponentials, the double exponential complexity comes both from
the size of the formula and the size of the arena. Afterwards, since the arena keeps growing exponentially while
the size of the formula remains the same, the complexity comes essentially from the size of the arena. This
achieves the proof of Theorem 8.

Note that the subroutine LTLGameSolver(Gn, ϕn) of Algorithm 1, based on the automata-theoretic pro-
cedure of [PR89], does not merely decide the existence of a winning strategy, but actually builds one (if any).
Recall also that forgetful strategies are sufficient for LTL games, as they are particular cases of regular games
which enjoy the “Forgetful Determinacy” [Zei94]. By the natural bijection invoked in the proof of Proposition 13
between strategies in a powerset arena and strategies in the original arena, one can trace the strategy in Gn
back to a ([T0], ϕ0)-fully-uniform strategy in the original game G0.

Corollary 19 Forgetful strategies are sufficient for full-uniformity properties.

6 Discussion

We have investigated the concept of uniform strategies in two-player turn-based infinite-duration games, mo-
tivated by the many instances from the literature: games with imperfect information, games with epistemic
condition, non-interference, diagnosis and prognosis, and Dependence Logic. Uniformity is addressed in the
context of a semantic binary relation between plays of the arena, which can arise from any reason to relate plays
with each others, e.g. an epistemic feature.

In order to embrace all the examples we have encountered, and likely many potential others, we were led to
designing a formal language whose sentences express the very uniformity properties of strategies. Clearly, the
language-based approach offers intuitive definitions, while the set-theoretic one, which may capture a larger class
of uniformity properties, is much less readable. The particular uniformity properties that have been addressed
in the literature so far (Section 3) can now more easily be compared. Our language is an enrichment of the
Linear-time Temporal logic LTL [GPSS80], hence it is interpreted over plays. The additional feature is captured
by the modality R which quantifies universally over related plays. Whether this quantification ranges over all
plays in the arena or just over outcomes of the considered strategy yields two variants of uniform strategies,
namely fully-uniform and strictly-uniform strategies.

The general procedure to decide the fully-uniform strategy problem is non-elementary. This may be the
price to pay for a generic solution for arbitrarily complex uniformity properties, and we conjecture that the
fully-uniform strategy problem is non-elementary hard. However, bounding the R-depth of the formulas gives
an elementary bound complexity, which seems incidentally to be the case for all the examples of Section 3: only
formulas whose R-depth is one are needed, so that the generic procedure has “only” a double exponential time
complexity. Notice that [MPB11] obtained a tighter (optimal) single exponential time bound for solving games
with opacity condition, which corresponds to the fixed formula G¬RpS of R-depth equal to one and to a simple
fixed binary relation between plays (see Section 3.2). Notice that if we fix a formula of R-depth 1, the time
complexity Equation (1) of our procedure collapses to a single exponential time complexity in the size of the
arena and of the transducer.
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Our results can be extended and commented in many respects. We give here some of them.

First, the choice we have made to rely on an enrichment of the LTL logic can be questioned – although this
logic regarding properties of time is acknowledged in many respects. We may try to extend the synthesis proce-
dure to a much richer logic like the Linear-time µ-calculus, a language extending standard linear time temporal
logic with fix-point operators. But the current procedure relies on a bottom-up traversal of the parse-tree of the
formula ϕ, which cannot be generalized to formulas with arbitrary fix-points. The LTL logic falls into the very
particular so-called alternation-free fragment of the Linear-time µ-calculus, where fix-points do not interplay.
Significant progress in understanding this extended setting need being pursued.

Second, we considered a single semantic binary relation between plays. One may wonder whether the case of
several relations ;i, yielding modalities Ri at the language level, can be investigated at the algorithmic level.
We foresee a generalization of our powerset construction by synchronizing the execution of all the transducers
of the relations. We however remain cautious regarding the success of this approach since closely related topics
such as the decentralized diagnosis problem is known to be undecidable [ST02]. Still the question is important
as it would unify our setting with the Epistemic Temporal Logic ETL of [HV89] and bring light on the au-
tomated verification of ETL definable properties for open systems (see the module-checking problem of [KV97]).

Additional comments are needed to fully understand the contribution, in particular regarding the recent
developments of alternating-time epistemic logic [vdHW03, JH04, DEG10]. The two settings are close but
incomparable. With the uniform strategy concept, we aim at extending the range of (qualitative) properties of
strategies by means of binary relations between plays, and at exploiting those properties to synthesize particular
strategies. Instead, alternating-time epistemic logics offer a way to quantify over strategies that achieve ETL-
like properties, hence they are not synthesis-oriented, and moreover, they do not handle arbitrary relations
between plays. Unifying the two settings is a real challenge; we would need to design a (necessarily more
complex) language that incorporates the specification of the relation(s) between plays.
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