
Jumping Automata for Uniform Strategies
Bastien Maubert and Sophie Pinchinat

Université de Rennes 1, IRISA, Rennes, France

Abstract
The concept of uniform strategies has recently been proposed as a relevant notion in game the-
ory for computer science. It relies on properties involving sets of plays in two-player turn-based
arenas equipped with a binary relation between plays. Among the two notions of fully-uniform
and strictly-uniform strategies, we focus on the latter, less explored. We present a language that
extends CTL∗ with a quantifier ; over all related plays, which enables to express a rich class of
uniformity constraints on strategies. We show that the existence of a uniform strategy is equival-
ent to the language non-emptiness of a jumping tree automaton. While the existence of a uniform
strategy is undecidable for rational binary relations, restricting to recognizable relations yields
a 2Exptime-complete complexity, and still captures a class of two-player imperfect-information
games with epistemic temporal objectives. This result relies on a translation from jumping tree
automata with recognizable relations to two-way tree automata.

1998 ACM Subject Classification F.4 Mathematical Logic and Formal Languages

Keywords and phrases Games, Imperfect information, Uniform strategies, Jumping automata

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2013.287

1 Introduction

Infinite-duration game models have been intensively studied for their applications in computer
science [2] and logic [10]. First, infinite-duration games provide a natural abstraction of
computing systems’ non-terminating interaction [1] (think of a communication protocol
between a printer and its users, or control systems). Second, infinite-duration games naturally
occur as a tool to handle logical systems for the specification of non-terminating behaviors,
such as for the propositional µ-calculus [8], leading to a powerful theory of automata, logics
and infinite games [10] and to the development of algorithms for the automatic verification
(“model-checking”) and synthesis of hardware and software systems. In all cases, solving
games aims at computing a strategy (of some distinguished player) whose outcomes fulfill
ω-regular conditions meant to describe some desirable property.

In essence, ω-regular conditions are evaluated on individual plays, independently of
other plays that result from the strategy. However, turning to imperfect-information games
raises the need to deal with sets of plays, as the strategic decision has to be the same in
indistinguishable situations [19]. This typical property of strategies in imperfect-information
games is in general dealt aside from the ω-regular winning conditions. However, this splitting
is a real issue when considering properties of strategies that mix, e.g. knowledge and time.

In an attempt to study this problem in depth, [14] introduced a general notion of uniform
strategies and showed that it captures a variety of settings from the literature. Uniformity
properties of strategies are expressed in a logic that combines standard temporal modalities
with two new quantifiers, ; and ; , that universally quantify over “related” plays according
to some binary relation between plays. The difference between the two quantifiers is in their
range. While the strict quantifier ; only quantifies over related plays that follow the strategy,
the full quantifier ; ranges over all related plays in the arena.

© Bastien Maubert and Sophie Pinchinat;
licensed under Creative Commons License CC-BY

33rd Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2013).
Editors: Anil Seth and Nisheeth K. Vishnoi; pp. 287–298

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2013.287
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

288 Jumping Automata for Uniform Strategies

These quantifiers generalize the knowledge operator K of epistemic temporal logics [11]:
classically, the semantics of K is a universal quantification over histories related to the actual
one by some observational equivalence relation that captures the capabilities of the agent
– perfect/imperfect recall, synchronous/asynchronous, . . . [11]. In contrast, the setting of
[14] allows for arbitrary binary relations for the semantics of the quantifiers, as long as they
are rational, i.e. recognized by finite state transducers [6, 3]. Noticeably, most equivalence
relations used in epistemic temporal logics are recognized by very simple transducers. Addi-
tionally, rational relations need not be equivalences, and can capture relations used in belief
revision, and for modelling plausibility, with K45 or KD45 axiomatization [9].

Restricting to formulas that use only one kind of quantifier, the strict one or the full
one, yields the notions of strictly-uniform strategies and fully-uniform strategies respectively.
Deciding the existence of a fully-uniform strategy has already been investigated [15]: the
problem is k-Exptime-complete for logical specifications that involve up to k nested ;

quantifiers – 2Exptime-complete if k ≤ 2.
In this work, we focus on the even more involved case of strict-uniformity which, as

opposed to full-uniformity, does not allow for bottom-up constructions, as one cannot evaluate
inner-most formulas before knowing the whole searched strategy. Actually, this intricate
feature yields undecidability of the strictly-uniform strategy problem (i.e. the existence of
a strictly uniform strategy) when the whole class of rational relations is considered. More
precisely, we first show that this undecidability result holds even if we restrict to the subclass
of regular1 equivalence relations.

In an effort to better understand the difficulty of this problem, we propose an automata-
based approach inspired by [21] for solving LTL games. We introduce and study jumping
tree automata (JTA), a class of tree automata which generalizes standard alternating tree
automata. JTA are equipped with a binary relation between branches of trees and, in
addition to normal behaviour of alternating automata, they allow for jumps between related
nodes of the input tree. Intuitively, the jumps of JTA “implement” the meaning of the ;

operator in the logic ;CTL∗, that we also define in this contribution as an extension of
the logic ;LTL introduced in [14]. We show that JTA capture the full logic ;CTL∗, and
that from a uniformity property a JTA can be built that accepts the tree unfoldings of
strictly-uniform strategies.

Although the language emptiness problem for JTA is unsurprisingly undecidable when
considering arbitrary rational relations over branches of trees, we identify a decidable case
when the class of binary relations between branches is confined to the well-known family
of recognizable relations; basically, such relations only challenge a bounded amount of
information in each branch. Decidability of JTA emptiness in this case is shown by an
effective transformation of JTA with recognizable relations into equivalent two-way tree
automata, and decidability of the strictly-uniform strategy problem for recognizable relations
follows. More precisely, we establish that the emptiness problem for JTA with recognizable
relations is Exptime-complete, and that the strictly-uniform strategy problem for this class
of relations is 2Exptime-complete.

This latter result sheds light on phenomena in games of imperfect information. In such
games, only observation-based strategies are allowed, enforcing players to play identically
along plays that share the same sequence of observations. A weaker form of this requirement
is the knowledge-based2 strategies, i.e. players play identically along plays that yield the

1 captured by synchronous transducers
2 This vocabulary is highly misleading, and we now rather say information-set-based instead.

B. Maubert and S. Pinchinat 289

same information set. Although being rational, the observation-based equivalence relation is
not recognizable, unlike the information-set-based equivalence relation. Interestingly, in two-
player games with ω-regular winning objectives, the existence of an observation-based strategy
implies the existence of an information-set-based one, hence looking for the latter is enough;
but this does no longer hold for more players. Our results (on undecidability/decidability)
distinguishing arbitrary rational relations from recognizable ones gives a new insight on the
frontier between imperfect-information games with two players and games with more players.

Additionally, our automata-theoretic approach based on jumping tree automata yields an
effective method to solve two-player imperfect-information games with epistemic temporal
logic specifications of winning conditions. By interpreting the ; quantifier of the logic
;CTL∗ as the information-set-based knowledge operator, we can in a unified formalism
express that, e.g. a strategy is information-set-based on the one hand, and fulfills some
branching-time epistemic temporal property, on the other hand. Actually, we may even
extend the setting to deal with several ;i modalities, referring to different binary relations
in a single specification: in particular, our decidability result for recognizable relations would
still hold, with no additional complexity cost. It would then be possible to seek for a single
player’s information-set-based strategy with a fairly rich epistemic condition involving the
knowledge of other players. Also, because recognizable relations are closed under intersection,
such an extension would enable to reason on multi-player imperfect-information arenas about
the existence of a coalition strategy (involving two meta players: the coalition and the
anti-coalition) with distributed knowledge, as long as this knowledge can be bounded. Due
to lack of space, we do not present this significant generalization in the paper.

The rest of the paper is organized as follows. In Section 2, we remind some notions
concerning trees and game arenas. We present the language ;CTL∗ to specify uniform
strategies in Section 3, and we prove in Section 4 that the strictly-uniform strategy problem is
undecidable for regular equivalence relations. In Section 5 we define jumping tree automata,
we show that they capture ;CTL∗ and we present a reduction of the strictly-uniform strategy
problem to their non-emptiness. Finally, we prove in Section 6 that JTA with recognizable
relations can be turned into equivalent two-way tree automata, yielding the decidability of
the strictly-uniform strategy problem for recognizable relations.

2 Preliminaries

2.1 Basic notions on trees

For the rest of the paper, let k ∈ N be a natural number, and let [k] denote the set {1, . . . , k}.
An infinite tree is a nonempty set t ⊆ [k]∗ such that if x · i ∈ t, then x ∈ t, and if x ∈ t, there
exists i ∈ [k] such that x · i ∈ t. The elements of t are called nodes, and the empty word ε is
the root of the tree. If x · i ∈ t, we say that x · i is a child of x, and that x is the parent of
x · i. We will note x · ↑ the parent of a node x: (x · i) · ↑ := x. Note that ε · ↑ is undefined as
the root has no parent. Given a node x of a tree t, we let Paths(x) be the set of infinite
paths π = x0x1 . . . in t such that x0 = x and for all i, xi+1 is a child of xi. Also, for a path
π = x0x1x2 . . ., πi denotes xixi+1xi+2 . . .

Given a finite alphabet Σ, a Σ-labelled tree is a pair T = (t, `), where t is a tree and ` :
t→ Σ is a labelling. For a node x = i1i2 . . . in in t, n ≥ 0, we define its node word w(x) made
of the sequence of labels from the root to this node: w(x) := `(ε)`(i1)`(i1i2) . . . `(i1 . . . in).

FSTTCS 2013

290 Jumping Automata for Uniform Strategies

2.2 Two-player turn-based game arenas

We consider two-player turn-based games played on finite graphs with vertices labelled with
propositions. For the rest of the paper, we let AP be an infinite countable set of atomic
propositions.

An arena is a finite structure G = (V,E, v0, ν) where V = V1] V2 is the finite set of
positions, partitioned between positions of Player 1 (V1) and those of Player 2 (V2), E ⊆ V ×V
is the set of edges, v0 ∈ V is the initial position and ν : V → 2AP is a valuation function,
mapping each position to a finite set of atomic propositions. We will assume that for each
position v there is an atomic proposition pv such that pv ∈ ν(v′) if, and only if, v = v′. For
v ∈ V , we write E(v) = {v′ | (v, v′) ∈ E} for the set of successors of v, and we assume that
for all v ∈ V , E(v) is nonempty. Plays∗ and Playsω are, respectively, the set of finite and
infinite plays. For an infinite play π = v0v1 . . . and i ∈ N, π[i] := vi and π[0, i] := v0 . . . vi.

A strategy for Player 1 is a partial function σ : Plays∗ → V that maps a finite play ending
in v ∈ V1 to some successor of v. We say that a play π ∈ Playsω is induced by σ if for all
i ≥ 0 such that π[i] ∈ V1, π[i+1] = σ(π[0, i]), and the outcome of σ, noted Out(σ) ⊆ Playsω,
is the set of all infinite plays that are induced by σ. In the following, it is convenient to see
a strategy σ as the tree Tσ, obtained by unfolding the arena and pruning moves that do
not follow the strategy. Formally, a strategy tree T = (t, `) is a 2AP -labelled tree such that
`(ε) = ν(v0) and for every x ∈ t, letting v be the unique position such that pv ∈ `(x):

if v ∈ V1 then x has a unique child x′, and `(x′) = ν(v′) for some v′ ∈ E(v)
if v ∈ V2 then x has exactly one child x′ for each v′ ∈ E(v), and `(x′) = ν(v′).

3 Uniform strategies

A uniform strategy is a strategy subject to a uniformity constraint, such as being observation-
based (see Example 2). In the purpose of automated synthesis of uniform strategies, we
introduce a logical formalism ;CTL∗, in the spirit of [14], but extending the temporal features
from LTL to CTL∗ [7] (enabling us to capture, e.g. module-checking [13]). The logic ;CTL∗ is
interpreted over infinite trees, and we use it to reason on strategies seen as trees. It contains
a quantifier ; that universally quantifies over “related” finite plays, or equivalently over
nodes in the strategy tree related by some binary relation ;.

The set of well-formed ;CTL∗ state formulas is given by the following grammar:

State formulas: ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Aψ | ; ϕ where p ∈ AP
Path formulas: ψ ::= ϕ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ

Classically, we define the Boolean conjunction for both types of formula ϕ ∧ ϕ and ψ ∧ ψ
with their expected meaning. Also, for each path formula ψ, we write Eψ for the state
formula ¬A¬ψ, Fψ for >Uψ, Gψ for ¬F¬ψ and for each state formula ϕ, we write ; ϕ for
¬ ; ¬ϕ.

Given a binary relation ; over (2AP)∗, a 2AP -labelled tree 3 T = (t, `) and two nodes
x, y ∈ t, we will abuse notations by writing x ; y for w(x) ; w(y) (that is their node words
are related by ;). We define the semantics of ;CTL∗ as follows, where x ∈ t is a node and
π is an infinite path:

3 In fact, by 2AP , we mean 2AP ′
, where AP ′ is some finite subset of AP .

B. Maubert and S. Pinchinat 291

x |= p if p ∈ `(x) x |= ¬ϕ if x 6|= ϕ

x |= ϕ1 ∨ ϕ2 if w |= ϕ1 or w |= ϕ2 x |= Aψ if for all π ∈ Paths(x), π |= ψ

x |= ; ϕ if for all y ∈ t such that x ; y, y |= ϕ

π |= ϕ if x0 |= ϕ, where π = x0x1 . . . π |= ¬ψ if π 6|= ψ

π |= ψ1 ∨ ψ2 if π |= ψ1 or π |= ψ2 π |= Xψ if π1 |= ψ

π |= ψ1Uψ2 if there exists i ≥ 0 such that πi |= ψ2 and for all 0 ≤ j < i, πj |= ψ1

We extend the semantics to trees by writing T |= ϕ whenever ε |= ϕ. In particular,
T |= Aψ if every branch of T satisfies ψ.

I Definition 1. Let G be an arena, ; be a relation over (2AP)∗ and ϕ be a ;CTL∗ formula.
A strategy σ is (;, ϕ)-uniform if the strategy tree of σ satisfies ϕ, i.e. Tσ |= ϕ.

I Example 2. Consider the case of observation-based strategies in two-player games with
imperfect information. Such games are played on graphs with edges labelled by actions and
proceed as follows. In position v, Player 1 chooses an action a, and Player 2 chooses a new
position reachable from v via an a-edge. The imperfect information is caused by the inability
of Player 1 to see the very position chosen by Player 2, but only its observation; note that the
same observation may be shared by several positions. In such games, strategies for Player 1
are required to assign the same action to observationally equivalent situations.

Such a requirement can be specified as a uniformity constraint in our framework. To do
so, we convert actions into positions: choosing action a in node v is simulated by moving to
the newly created position (v, a), and we enrich the arena labelling by atomic propositions
po for observations, and by pa in all positions of the form (v, a). Noting ; the observational
equivalence relation, and defining ψObs := G

∧
a∈Act(Xpa → ;EXpa), we have: a strategy

is observation-based if, and only if, it is a (;, AψObs)-uniform strategy. Indeed, a strategy
tree that verifies AψObs represents a strategy that, whenever it recommends action a after
some finite play, it does so in all ;-related (i.e. observationally equivalent) finite plays.

Beyond the example above, the approach clearly enables to represent various kinds of
observation-based strategies by tuning relation ; according to the desired player’s ob-
servational abilities and/or memory resources (perfect-recall, memoryless, synchronous,
asynchronous, etc). Note that in this framework, a formula like AψObs∧ϕ naturally combines
on observation-based constraint with an arbitrary epistemic temporal winning condition ϕ.
Also we refer the interested reader to [14] for more examples of uniform strategies.

4 A first undecidability result

In order to address automated synthesis of uniform strategies one has to make assumptions
on the relation used in the semantics of the language ;CTL∗, and in particular how it can
be finitely represented. We therefore consider the expressive class of rational relations.

4.1 Rational relations
We briefly recall the notions of rational relations and transducers. A finite state transducer
over the alphabet Σ is a tuple M = (Q, q0, QF ,∆), where Q is a finite set of states,
q0 ∈ Q is a distinguished initial state, QF ⊆ Q is a set of accepting states, and ∆ ⊆
Q× (Σ ∪ {ε})× (Σ ∪ {ε})×Q is a finite set of transitions. A transducer is synchronous if
∆ ⊆ Q× Σ× Σ×Q.

Intuitively, a transducer reads a finite word w ∈ Σ∗ on its input tape, writes a finite word
w′ ∈ Σ∗ on its output tape, and accepts (w,w′) if it reaches an accepting state. The relation
[M] recognized by M is the set of pairs (w,w′) accepted byM.

FSTTCS 2013

292 Jumping Automata for Uniform Strategies

It is well known that transducers recognize rational relations [3], and that synchronous
transducers recognize regular relations [12].

For example, the observational equivalence relation for a player with asynchronous perfect-
recall is rational, and accepted by a fairly simple transducer with one state per observation.
For synchronous perfect-recall, the relation is regular and is accepted by an even simpler
synchronous transducer with only one state.

4.2 The problem SUS and its undecidability
Back to our central topic on uniform strategies, we consider the following decision problem:

SUS :=
{

(G,M, ϕ) G is a finite arena,M is a transducer, ϕ ∈ ;CTL∗

and there exists a ([M], ϕ)-uniform strategy in G.

}
It can be proven, by reduction of the Post Correspondence Problem, that SUS is

undecidable, but we propose here the stronger result.

I Theorem 3. SUS is undecidable for rational relations, even if we restrict to regular
equivalence relations.

The rest of the section is dedicated to the proof of Theorem 3. We reduce the distrib-
uted strategy problem for three-player imperfect-information games with safety objective, as
addressed by [16, 4]. We present the problem as stated in [4], in which two players with
imperfect information (Player A and Player B) play against nature (the third player). Form-
ally, let ActA (resp. ActB) be a finite set of available actions for Player A (resp. Player B),
and ΓA (resp. ΓB) be a finite set of observations for Player A (resp. Player B). We write
Act = ActA ×ActB .

A finite safety imperfect-information game is a tuple Gimp = (V,E, v0, γA, γB) where
E ⊆ V ×Act×V is a set of transitions, γX : V → ΓX is an observation function (X ∈ {A,B}),
and with a designated subset Bad ⊆ V of “bad” positions that Player A and Player B should
avoid. In each round, Player X chooses an action cX ∈ ActX , which gives an action
profile x = (cA, cB), and nature chooses a next position in E(v, x) = {v′ | (v, x, v′) ∈ E}.
We suppose that all actions are allowed in every position: for all v ∈ V , a ∈ ActA and
b ∈ ActB, we have E(v, (a, b)) 6= ∅. The observation functions are extended to finite plays
ρ = v0x0v1 . . . xn−1vn by letting γX(ρ) = γX(v0)γX(v1) . . . γX(vn). Note that actions are
not observed.

A strategy for Player X is a partial mapping σX : (V ·Act)∗ · V → ActX that assigns an
action to each finite play. It must be observation-based: for any finite plays ρ and ρ′ such
that γX(ρ) = γX(ρ′), σX(ρ) = σX(ρ′). A distributed strategy is a pair (σA, σB) of strategies
for Player A and Player B. The outcome of a distributed strategy is the set of infinite plays
that are both induced by σA and σB , and a distributed strategy is winning if no play in the
outcome ever visits a position in Bad.

It is well known [16, 4] that the following problem is undecidable : given a safety
imperfect-information game, does there exist a winning distributed strategy?

We reduce this problem to SUS. Let Gimp = (V,E, v0, γA, γB) be an imperfect-information
arena with observations ΓA and ΓB and bad states Bad. We build a game arena G =
(V ′, E′, v′0, ν) in which Player 1 plays for both Player A and Player B, and Player 2 plays for
nature; Figure 1 shows how each transition in Gimp is transformed into a widget in G.

The set of positions V ′ = V A1] V B1] V2 is split into three: in positions of V A1 = V ,
Player 1 simulates moves of Player A, in positions of V B1 = V × ActA, Player 1 simulates
moves of Player B, and in positions of V2 = V × ActA × ActB, Player 2 simulates moves

B. Maubert and S. Pinchinat 293

v v′
a, b

v
a

pa

a

b
pb

v′

pbad

Figure 1 Coding in G a transition (v, (a, b), v′) of Gimp, with v′ ∈ Bad. Colors represent the
observations of Player A and Player B.

of nature. Hence for all v, v′, a, b, we have (v, (v, a)) ∈ E′, ((v, a), (v, a, b)) ∈ E′, and if
(v, (a, b), v′) ∈ E then ((v, a, b), v′) ∈ E′. For each action c ∈ ActX , pc labels positions in
which the last move was Player 1 simulating the choice of action c by Player X. In addition,
“bad” positions are marked with proposition pbad. As it is assumed in our definition of game
arenas that each position v is identified by an atomic proposition pv, we keep it silent in
the following formal definition of the labelling. We consider the set of atomic propositions
{pc | c ∈ ActA∪ActB}∪{pbad}, and we label the arena as follows: if v ∈ Bad, ν(v) = {pbad},
ν(v, a) = {pa, pbad} and ν(v, a, b) = {pb, pbad}; otherwise, ν(v) = ∅, ν(v, a) = {pa} and
ν(v, a, b) = {pb}. Finally, we set v′0 = v0.

Clearly, since Player 1 plays for the coalition {A,B}, we expect each branch of her
strategy to satisfy the following path formula:

ψSafe := G¬pbad. (1)

For a finite play ρ = v0(v0, a0)(v0, a0, b0)v1 . . ., we note γX(ρ) = γX(v0)γX(v1) . . .
We want to enforce that when Player 1 simulates a move of Player X, her choice is only

based on Player X’s observation. To do so, we define the symmetric and transitive relation
; over V ′∗ that relates two sequences of positions if they end in positions belonging to the
same player (A or B), and are observationally equivalent for this player:4

; :=
{

(ρ, ρ′) last(ρ) ∈ V 1
1 and last(ρ′) ∈ V A

1 and γA(ρ) = γA(ρ′), or
last(ρ) ∈ V B

1 and last(ρ′) ∈ V B
1 and γB(ρ) = γB(ρ′)

}
. (2)

Note that for the sake of clarity we defined ; on V ∗ instead of (2AP)∗, but by considering
the propositions pv ∈ AP (v ∈ V) and working with the alphabet Σ = {{pv} ∪ ν(v) | v ∈ V },
one can easily rephrase relation ; of Equation (2) as a binary relation over Σ∗.

The following path formula states that whenever Player 1 simulates a move of Player X,
she chooses the same action in all plays observationally equivalent for Player X:

ψObs := G
∧

c∈ActA∪ActB

Xpc → ;EXpc. (3)

Combining Equations (1) and (3) we get the following reduction.

I Lemma 4. There is a winning distributed strategy in Gimp if and only if there is a
(;, A(ψObs ∧ ψSafe))-uniform strategy in G.

4 For a finite word w, last(w) classically denotes its last letter.

FSTTCS 2013

294 Jumping Automata for Uniform Strategies

q0

qA1

qA2qA3

qB1

qB2qB3

with γA(v) = γA(v′) with γB(v) = γB(v′)

v/v′ v/v′

(v, a)/(v′, a′)

(v, a, b)/(v′, a′, b′)

v/v′ (v, a)/(v′, a′)

(v, a, b)/(v′, a′, b′)

v/v′

Figure 2 The synchronous transducerMA,B .

We show that ; is regular.
Consider the synchronous transducer MA,B of Figure 2. State q0 is the initial state

(ingoing arrow), qA1 and qB2 are final states (doubly circled). Transducer MA,B works as
follows: before reading a word w, the transducer guesses whether we are interested in Player A
or Player B’s observation. In the first case it goes to the left, reads w and writes a word w′
observationally equivalent for Player A (remember that actions are not observed). The pair
(w,w′) is accepted if w (and w′) indeed ends in a position of Player A. The second case is
symmetric. SoMA,B recognizes ;, hence ; is regular. Note that ; is not reflexive, but its
reflexive ∼ closure is also regular (plug inMA,B the synchronous transducer for the identity
relation). Lemma 4 would also hold for ∼, which concludes the proof of Theorem 3.

5 Intermezzo: jumping tree automata

We remind the notions of alternating tree automata and two-way tree automata, and we
define jumping tree automata (JTA). For an introduction to the theory of automata on
infinite trees see [20].

For a set X, B+(X) is the set of positive boolean formulas over X, i.e. formulas built with
elements of X as atomic propositions and using only connectives ∨ and ∧. We also allow for
formulas > and ⊥, and ∧ has precedence over ∨. Elements of B+(X) are denoted by α, β . . .
Let D ⊆ [k]∪{ε, ↑, ; , ;} be a set of directions. A D-automaton is a tuple A = (Σ, Q, δ, q0, C)
where Σ is a finite alphabet, Q a finite set of states, q0 ∈ Q an initial state, C an accepting
condition, and δ : Q× Σ→ B+(D ×Q) a transition function. If D contains ; or ; then we
additionally require the automaton to be equipped with a binary relation ; over Σ∗.

We note DA = [k], D↑ = DA ∪ {ε, ↑} and D; = DA ∪ {; , ;}. DA-automata are
alternating tree automata, D↑-automata are two-way alternating tree automata, and D;-
automata are jumping alternating tree automata (JTA).

In this work we are not interested in identifying children of a node in a tree, but only
in existentially or universally quantifying over them. Therefore, for the sake of readability,
we use the abstract directions DA = {3,�} instead of [k], as in alternating automata on
graphs [5, 17]. We use notation [3, q] as a macro for [1, q] ∨ . . . ∨ [k, q], and similarly [�, q]
for [1, q] ∧ . . . ∧ [k, q]. All that we establish on this version of jumping tree automata can be
easily adapted to the setting where directions are made explicit.

B. Maubert and S. Pinchinat 295

Acceptance of an input tree T = (t, `) in a designated node x0 ∈ t by a D-automaton
A is classically defined on a two-player game between Eve (the proponent) and Adam
(the opponent): Let T = (t, `) be a Σ-labelled tree, x0 ∈ t, and A = (Σ, Q, δ, q0, C) be
a D-automaton. We define the game Gx0

A,T = (V,E, v0): The set of positions is V =
t×Q×B+(D×Q), the initial position is (x0, q0, δ(q0, `(x0))), and a position (x, q, α) belongs
to Eve if α is of the form α1 ∨ α2, [3, q′] or [; , q′]; otherwise it belongs to Adam.

Moves in Gx0
A,T are defined by Rules (4a)-(4e).

(x, q, α1 † α2)→ (x, q, αi) where † ∈ {∨,∧} and i ∈ {1, 2} (4a)
(x, q, [#, q′])→ (y, q′, δ(q′, `(y))) where # ∈ {3,�} and y is a child of x (4b)
(x, q, [ε, q′])→ (x, q′, δ(q′, `(x))) (4c)
(x, q, [↑, q′])→ (y, q′, δ(q′, `(y))) where y is x’s parent (4d)
(x, q, [;, q′])→ (y, q′, δ(q′, `(y))) where ; ∈ {; , ;} and x ; y (4e)

Positions of the form (x, q,>) and (x, q,⊥) are deadlocks, winning for Eve and Adam
respectively. Positions of the form (ε, q, [↑, q′]) are also deadlocks as the root of a tree has no
parent; they are winning for Adam.

Most of the time the starting node x0 will be the root ε of the tree, and in this case
we simply write GA,T instead of GεA,T . The winning condition of Gx0

A,T results from the
acceptance condition C of A. In this work, we consider parity condition: C is a mapping that
assigns to each state of the automaton a natural number called its colour, and an infinite
play is winning for Eve if the least colour seen infinitely often during the play is even. A tree
T is accepted by A if Eve has a winning strategy in GA,T , and we denote by L(A) the set of
trees accepted by A.

We first prove that the class of JTA is closed by complementation, by a construction
inspired from classical alternating automata. To this aim we classically define the dualization
α̃ of a formula α ∈ B+(D; ×Q) by induction as follows: >̃ =⊥, ⊥̃ = >, α̃ ∨ β = α̃ ∧ β̃,
α̃ ∧ β = α̃ ∨ β̃, [̃3, q] = [�, q], [̃�, q] = [3, q], and, as expected, [̃ ; , q] = [;, q] and
[̃;, q] = [; , q].

I Definition 5. Let A = (Σ, Q, δ, q0, C) be a jumping tree automaton. We define the
complement of A by Ã = (Σ, Q, δ̃, q0, C̃), where C̃(q) = C(q) + 1, and δ̃(q, a) = δ̃(q, a).

I Lemma 6. Eve wins Gx0

Ã,T
if, and only if, Eve loses Gx0

A,T .

Proof. The arenas of both games are isomorphic, and if a position belongs to Eve in Gx0
A,T

then its counterpart in Gx0

Ã,T
belongs to Adam, and vice versa. Also, a play is winning for

a player in one game if and only if its counterpart in the other game is winning for the
opponent. From this we have that a winning strategy for a player in one game gives a winning
strategy for its opponent in the other, and because parity games are determined [23], the
result follows. J

We now establish that JTA capture ;CTL∗.

I Theorem 7. Let ϕ be an ;CTL∗ formula and ; a binary relation over (2AP)∗. There
exists a jumping tree automaton Aϕ of size exponential in |ϕ| and equipped with ; such that
T ∈ L(Aϕ) if, and only if, T |= ϕ.

The following expresses that JTA are adequate machines for the decision problem SUS.

FSTTCS 2013

296 Jumping Automata for Uniform Strategies

I Theorem 8. Let G be a finite arena, ; be a binary relation and ϕ ∈ ;CTL∗. There is a
jumping tree automaton A equipped with ; such that σ is a (;, ϕ)-uniform strategy if, and
only if, Tσ ∈ L(A). Moreover, A can be chosen of size |A| = O(|G| × 2|ϕ|).

Proof. One simply builds from G a nondeterministic tree automaton AG that accepts the set
of strategy trees for Player 1 in G. AG is of size linear in |G|. Then, by Theorem 7, one can
build a JTA Aϕ equipped with ; that accepts the models of ϕ. This automaton is of size
|Aϕ| = O(2|ϕ|). The product A = AG ×Aϕ is thus a JTA that accepts precisely the strategy
trees that verify ϕ. J

The following is a direct consequence of Theorems 3 and 8.

I Corollary 9. The emptiness problem for jumping tree automata with regular equivalence
relations is undecidable.

6 The special case of recognizable relations

We first show that JTA with recognizable relations (Definition 10) can be effectively trans-
formed into equivalent two-way tree automata of linear size (Theorem 12). We then get
two central corollaries: first, the emptiness problem for JTA with recognizable relations is
decidable (Corollary 13), and second, the problem SUS becomes decidable when restricted
to recognizable relations (Corollary 14) and it is 2Exptime-complete.

I Definition 10. A relation ; ⊆ Σ∗ × Σ∗ is recognizable if there is a family of regular
languages L1,L′1, . . . ,Ln,L′n ⊆ Σ∗ such that ; =

n⋃
i=1
Li × L′i.

We rather use another, easily shown equivalent, characterization. Let w ∈ Σ∗ denote the
mirror image of a word w ∈ Σ∗ (i.e. ε = ε and aw = wa).

I Proposition 11. A relation ; over Σ∗ is recognizable if the language L; := {u#v | u ; v}
is regular (accepted by a finite state automaton), with fresh symbol # /∈ Σ.

Given a recognizable relation ;, we write B; = (Σ ∪ {#}, Q;, δ;, s0, F;) for the
canonical deterministic finite state automaton of L;, with standard interpretation of the
components of B;. We will abuse vocabulary by saying that “B; recognizes relation ;”.

A typical example of recognizable relation relates to information-set-based strategies
in two-player imperfect-information games, where finite plays are related whenever they
share the same information set according to the player under imperfect information, i.e. the
set of states the player considers possible after “observing” the course of the game. As in
finite arenas information sets are finitely many, a mere powerset construction provides the
deterministic finite state automaton that recognizes the information-set-based relation.

A central result of our contribution is an alternative characterization of JTA with
recognizable relations.

I Theorem 12. Let A be a jumping tree automaton with a recognizable relation ;. Then,
there is a two-way tree automaton Â of size O(|A| × |B;|) such that L(A) = L(Â).

We sketch the proof: when JTA A goes down along a branch of a tree, Â behaves likewise.
The critical points are the jump instructions of A, say in a node x of the tree. At this
point, Â stops behaving like A and enters a jump mode that simulates this jump: Â triggers
automaton B; and goes up to the root while running B; on the reversed branch. When
reaching the root, B; has read w(x), the mirror of the node word of x, and Â feeds B; with

B. Maubert and S. Pinchinat 297

the # symbol. Then Â goes down along some or all (depending on the jump: respectively
existential or universal) branch(es) of the tree while still running B;. Each time B; reaches
a final state in a node y, it has read w(x)#w(y), which by Proposition 11 means that x ; y;
the jump mode can then be closed. In this case, Â resumes the simulation of A.

From Theorem 12, we immediately infer two significant corollaries.

I Corollary 13. The non-emptiness problem for jumping tree automata with recognizable
relations is decidable in time exponential in the size of the jumping automaton and of the
word automaton recognizing the relation.

Proof. This is a direct consequence of Theorem 12 along with the Exptime complexity of
the non-emptiness problem for two-way alternating tree automata [22]. J

Also, combining Theorem 8 with Corollary 13 gives a decidable subproblem of SUS.

I Corollary 14. The problem

SUSrec :=
{

(G,B;, ϕ) G is a finite arena, ; is a recognizable relation, ϕ ∈ ;CTL∗

and there exists a (;, ϕ)-uniform strategy in G.

}
is 2Exptime-complete, and the decision procedure synthesizes a solution strategy (if any).

Proof. Let G be a finite arena, ; be a recognizable relation, and ϕ ∈ ;CTL∗. By Theorem 8,
there is a JTA A equipped with relation ; of size O(|G| × 2|ϕ|) whose language is the
tree unfoldings of (;, ϕ)-uniform strategies. By Corollary 13, emptiness of L(A) can be
decided in time 2O(|G|×2|ϕ|×|B;|), hence (G,B;, ϕ) ∈ SUSrec can be decided in 2Exptime.
Furthermore, a strategy (if any) is synthesized when checking the non-emptiness of the JTA A:
we can make A an equivalent two-way tree automaton, then an equivalent non-deterministic
tree automaton and apply classic algorithms to exhibit a regular tree (if any).

The 2Exptime-hardness of SUSrec comes from the 2Exptime-completeness of solving
LTL games [18]: given an arena G and an LTL formula ψ, we consider the instance (G,B;, Aψ)
of SUSrec, where ; is e.g. the full relation. Clearly, as there is no ; quantifier in ψ, a
strategy in G which satisfies Aψ is a (;, Aψ)-uniform strategy in G, and vice versa. J

Future work: We want to study the links between jumping tree automata and the logic
;Lµ, i.e. extending the full µ-calculus with the ; quantifier. We conjecture that jumping
automata capture ;Lµ, but the other direction deserves further investigations. Also, in
order to handle richer uniformity constraints, we seek for a class of relations for which
jumping tree automata languages would exceed the line of ω-regulararity, and still enjoy a
decidable emptiness problem. Finally, the notion of uniform strategy generalizes to the case
of concurrent game structures, and investigating what results are preserved is yet another
interesting perspective, as well as possible extensions to strategic logics, with modalities
quantifying over uniform strategies. We foresee that questions of strategy context may
become even trickier than usual when rational relations are involved.

References
1 R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal logic. Journal of

the ACM (JACM), 49(5):672–713, 2002.
2 K.R. Apt and E. Grädel. Lectures in Game Theory for Computer Scientists. Cambridge

University Press, 2011.
3 Jean Berstel. Transductions and context-free languages, volume 4. Teubner Stuttgart, 1979.

FSTTCS 2013

298 Jumping Automata for Uniform Strategies

4 Dietmar Berwanger and Lukasz Kaiser. Information tracking in games on graphs. Journal
of Logic, Language and Information, 19(4):395–412, 2010.

5 Mikolaj Bojanczyk. Two-way alternating automata and finite models. In Peter Widmayer,
Francisco Triguero Ruiz, Rafael Morales Bueno, Matthew Hennessy, Stephan Eidenbenz,
and Ricardo Conejo, editors, ICALP, volume 2380 of Lecture Notes in Computer Science,
pages 833–844. Springer, 2002.

6 Samuel Eilenberg. Automata, languages, and machines, volume 1. Access Online via
Elsevier, 1974.

7 E. A. Emerson and J. Y. Halpern. “Sometimes” and “Not Never” revisited: On branching
versus linear time temporal logic. Journal of the ACM, 33(1):151–178, 1986.

8 E. Allen Emerson and Charanjit S. Jutla. Tree automata, mu-calculus and determinacy
(extended abstract). In FOCS, pages 368–377. IEEE Computer Society, 1991.

9 Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. Reasoning about
knowledge, volume 4. MIT press Cambridge, 1995.

10 E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and Infinite Games: A
Guide to Current Research [outcome of a Dagstuhl seminar, February 2001], volume 2500
of Lecture Notes in Computer Science. Springer, 2002.

11 Joseph Y. Halpern and Moshe Y. Vardi. The complexity of reasoning about knowledge and
time. 1. Lower bounds. Journal of Computer and System Sciences, 38(1):195–237, 1989.

12 Bakhadyr Khoussainov and Sasha Rubin. Automatic structures: overview and future dir-
ections. Journal of Automata, Languages and Combinatorics, 8(2):287–301, 2003.

13 Orna Kupferman and Moshe Y. Vardi. Module checking revisited. In Orna Grumberg,
editor, CAV, volume 1254 of Lecture Notes in Computer Science, pages 36–47. Springer,
1997.

14 Bastien Maubert and Sophie Pinchinat. A general notion of uniform strategies. To appear
in International Game Theory Review, 2013.

15 Bastien Maubert, Sophie Pinchinat, and Laura Bozzelli. The complexity of synthesizing uni-
form strategies. In Proceedings 1st International Workshop on Strategic Reasoning, Rome,
Italy, March 16-17, 2013, volume 112 of Electronic Proceedings in Theoretical Computer
Science, pages 115–122. Open Publishing Association, 2013.

16 Gary Peterson, John H. Reif, and Salman Azhar. Lower bounds for multiplayer nonco-
operative games of incomplete information. Computers & Mathematics with Applications,
41(7):957–992, 2001.

17 Nir Piterman and Moshe Y. Vardi. Global model-checking of infinite-state systems. In
Rajeev Alur and Doron Peled, editors, CAV, volume 3114 of Lecture Notes in Computer
Science, pages 387–400. Springer, 2004.

18 A. Pnueli and R. Rosner. On the synthesis of an asynchronous reactive module. In Proc.
16th Int. Coll. on Automata, Languages and Programming, ICALP’89, Stresa, Italy, LNCS
372, pages 652–671. Springer-Verlag, July 1989.

19 John H. Reif. The complexity of two-player games of incomplete information. Journal of
computer and system sciences, 29(2):274–301, 1984.

20 Wolfgang Thomas. Automata on infinite objects. In Handbook of Theoretical Computer
Science, Volume B: Formal Models and Sematics (B), pages 133–192. 1990.

21 Moshe Y. Vardi. Verification of concurrent programs: The automata-theoretic framework.
Annals of Pure and Applied Logic, 51(1):79–98, 1991.

22 Moshe Y. Vardi. Reasoning about the past with two-way automata. In Kim Guldstrand
Larsen, Sven Skyum, and Glynn Winskel, editors, ICALP, volume 1443 of Lecture Notes
in Computer Science, pages 628–641. Springer, 1998.

23 Wiesław Zielonka. Infinite games on finitely coloured graphs with applications to automata
on infinite trees. Theoretical Computer Science, 200(1–2):135–183, June 1998.

	Introduction
	Preliminaries
	Basic notions on trees
	Two-player turn-based game arenas

	Uniform strategies
	A first undecidability result
	Rational relations
	The problem SUS and its undecidability

	Intermezzo: jumping tree automata
	The special case of recognizable relations

